

Специализированный учебно-научный центр Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» (УрФУ)

СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

УТВЕРЖДАЮ

Заместитель директора по образовательной деятельности, по организации приёма и довузовскому образованию

Е. С. Авраменко

2025 г.

РАБОЧАЯ ПРОГРАММА ПО ПРЕДМЕТУ

«Математика: алгебра и начала анализа, геометрия, вероятность и статистика»

> 10-11 класс, углубленный уровень Физико-математический профиль

> > Срок реализации 2 года

РАССМОТРЕНО

на заседании кафедры математики

Протокол № 5 от «30» мая 2025 г.

РЕКОМЕНДОВАНО

Ученым советом СУНЦ УрФУ

Протокол № 6 от «19» июня 2025 г.

СОГЛАСОВАНО

Директор СУНЦ УрФУ

Академический директор СУНЦ УрФУ

Л. Е. Манылова

М. С. Рябцев

Екатеринбург, 2025

1. Пояснительная записка

Программа составлена на основе:

федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Минобрнауки России от 17.05.2012 № 413 в редакции приказа Минпросвещения России от 12.08.2022 № 732;

федеральной образовательной программы среднего общего образования, утвержденной приказом Минпросвещения России от 18.05.2023 № 371;

федерального перечня электронных образовательных ресурсов, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденного приказом Минпросвещения России от 02.08.2022 № 653.

Нормативный срок освоения программы — 68 учебных недель по 8 учебных часов в неделю, всего 544 учебных часа.

Специфика программы: программа учитывает специфику Специализированного учебнонаучного центра Уральского федерального университета (далее — СУНЦ УрФУ) и традиций преподавания математики в нём. Программа является преемственной по отношению к программам учебного предмета «Математика», использовавшихся в СУНЦ в 1989–2012 годах и разработанных авторским коллективом преподавателей математико-механического факультета УрГУ под руководством профессора Л. Н. Шеврина.

Цели и задачи программы: в соответствии с целью и задачами СУНЦ основной целью изучения предмета «Математика: алгебра и начала математического анализа, геометрия» на профильном уровне является создание условий для творческого математического развития учащихся, проявляющих способности к математике.

Задачами изучения предмета являются:

формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция, производная, интеграл), обеспечивающих преемственность и перспективность математического образования обучающихся;

подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества;

развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;

формирование функциональной математической грамотности: умения распознавать математические аспекты в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики

и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.

2. Содержание курса

№	Наименование темы	Содержание обучения					
		Модуль 1. Алгебра и начала анализа					
1	Введение в теорию чисел	Аксиомы Пеано. Сложение и умножение натуральных чисел, их свойства. Порядок на множестве натуральных чисел. Теорема о полной упорядоченности множества всех натуральных чисел. Метод математической индукции.					
		Делимость на множестве натуральных чисел и его свойства. Простые и составные числа. Основная теорема арифметики.					
		Основные алгебраические структуры: группа, кольцо, поле. Построение кольца целых чисел. Теорема о делении с остатком целого числа на натуральное. Наибольший общий делитель и наименьшее общее кратное. Теорема о представлении наибольшего общего делителя натуральных чисел a и b в виде их линейной комбинации. Алгоритм Евклида.					
		Сравнения. Простейшие свойства сравнений. Полная система вычетов по модулю <i>п</i> . Малая теорема Ферма. Приведенная система вычетов. Функция Эйлера и ее вычисление. Теорема Эйлера. Сравнения первой степени с одним неизвестным. Линейные диофантовы уравнения.					
2	Элементы теории множеств	Понятие множества. Отношение принадлежности. Подмножества, отношение включения. Способы задания множеств: перечислением, указанием характеристического свойства. Операции пересечения, объединения, разности; дополнение подмножества. Диаграммы Эйлера-Венна. Свойства операций над множествами. Законы де Моргана.					
		Упорядоченные пары. Декартово произведение множеств и его свойства.					
		Соответствия. Типы соответствий. Отображения и биекции. Композиция соответствий; соответствие, обратное к данному.					
		Равномощные множества. Конечные множества. Формула включений и исключений. Множество всех подмножеств (или булеан). Число элементов в булеане конечного множества.					
		Бесконечные множества. Счетные множества и их свойства. Счетность множества рациональных чисел, несчетность множества всех действительных чисел. Теоремы Кантора.					
		Понятие отношения. Рефлексивность, симметричность, антисимметричность, транзитивность. Отношения эквивалентности, их связь с разбиениями множеств. Отношения порядка; упорядоченные множества. Линейный порядок. Наибольший и наименьший элементы; супремум и инфимум. [Вполне упорядоченные множества. Теорема о трансфинитной индукции.]					
		Доказательство числовых неравенств. Неравенства между средним арифметическим и средним геометрическим, Коши-Буняковского, Бернулли, между средним арифметическим и средним квадратичным.					
3	Числовые функции	Способы задания числовых функций. График функции. График числовой функции как подмножество ${\bf R}^2$. Обратная функция. Свойства числовых функций (ограниченность, монотонность, четность, периодичность). Нули функции. Связь между свойствами функции и свойствами ее графика. Построение графиков функций с помощью геометрических преобразований.					
		Функции $y = kx + b$, $y = x $, $y = ax^2 + bx + c$ ($a \square 0$), $y = k/x$ ($k \square 0$), их					

		свойства и графики. Расположение корней квадратного трехчлена. Дробнорациональная функция. Понятие асимптоты.					
4 Многочлены		Многочлены от одной переменной с целыми, рациональными и действительными коэффициентами. Операции над многочленами. Делимость на множестве многочленов, деление с остатком, алгоритм Евклида. Корни многочленов и их кратность. Теорема Безу. Схема Горнера. Разложение многочлена на множители. Теорема Виета. Формулы сокращенного умножения. Рациональные корни многочленов с целыми коэффициентами. Многочлены от нескольких переменных. Симметрические многочлены. Элементарные симметрические многочлены. [Лексикографический порядок. Теорема о представлении симметрического многочлена в виде многочлена от элементарных					
5	Тригонометрия	симметрических.] Радианное и градусное измерение углов. Определения тригонометрических функций. Свойства тригонометрических функций и их графики. Тригонометрические тождества. Обратные тригонометрические функции, их свойства и графики.					
		Тригонометрические уравнения, неравенства, системы.					
6	Уравнения, неравенства и системы	Понятие об уравнении с одним неизвестным. ОДЗ уравнения. Системы и совокупности уравнений и неравенств. Следование. Равносильность.					
		Уравнения и неравенства с одним неизвестным. Методы решения уравнений, исследование их на равносильность: перенос из одной части в другую, приведения подобных, замена переменной, переход к дизъюнкции. Однородные уравнения. Использование ограниченности и монотонности функций, стоящих в левой и правой частях уравнения.					
		Системы уравнений с несколькими неизвестными. Методы решения систем (линейного преобразования, деления, переход к совокупности и др.). Однородные системы. Симметрические системы.					
		Неравенства с одной переменной. Метод интервалов. Решение неравенств с двумя переменными. Метод областей. Неравенства с модулем и/или параметром.					
7	Пределы. Непрерывность функции	Числовые последовательности. Способы задания последовательностей, рекуррентные соотношения. Предел числовой последовательности. Существование предела монотонной ограниченной последовательности. Число е. Пределы и арифметические операции. Пределы и неравенства: теорема «о двух полицейских». [Нахождение предела последовательности, заданной рекуррентно.]					
		Предел функции в точке, его единственность. Пределы и неравенства: теорема «о двух полицейских». Предел функции на бесконечности. Бесконечные пределы. Замечательные пределы.					
		Непрерывность функции в точке и на множестве. Непрерывность и арифметические операции. Теорема Больцано-Коши о нуле и ее следствия (теорема о промежуточном значении, о неподвижной точке, обоснование метода интервалов решения неравенств с одним неизвестным). Непрерывность композиции непрерывных функций. [Непрерывная функция на отрезке, теоремы Вейерштрасса.]					
8	Показательные и логарифмические функции, уравнения и неравенства	Степень с целым и рациональным показателями. Показательная функция, ее свойства и график. Показательные уравнения, неравенства и их системы.					
		Существование логарифма положительного действительного числа. Свойства логарифмов. Преобразование логарифмических выражений. Логарифмическая функция, ее свойства и график. Логарифмические уравнения, неравенства и их системы.					
9	Производная	Производная функции в точке, ее геометрический смысл. Касательная к графику функции в точке. Правила вычисления производных. Понятие дифференциала функции. Производная композиции функций.					

		Производная обратной функции. Нахождение производных простейших функций. Теоремы Ролля и Лагранжа. Формула Лагранжа конечных приращений. Производная и исследование функции на монотонность. Экстремумы функции. Теорема Ферма. Достаточные условия экстремума. Наибольшее и наименьшее значение функции. [Вторая производная и исследование функции на выпуклость и вогнутость.] Исследование функций и построение графиков с помощью производной. Вертикальные и наклонные асимптоты.				
10	Интеграл	Первообразная. Основное свойство первообразной. Таблица первообразных элементарных функций. Правила вычисления первообразных: первообразная суммы функций и произведения функции на число, замена переменной, интегрирование по частям.				
		Интеграл Римана от непрерывной функции на отрезке. Формула Ньютона-Лейбница. Геометрические применения интеграла (вычисление площадей и объемов).				
		Определение комплексного числа. Алгебраическая, триго- нометрическая и показательная формы записи комплексных чисел. Модуль и аргумент комплексного числа. Арифметические действия над комплексными числами. Возведение в натуральную степень, формула Муавра. Извлечение корня <i>n</i> -й степени из комплексного числа.				
	Перечень рекомендуемых	Основная литература				
	методических материалов, литературы, Интернетресурсов	1. Виленкин Н. Я. и др. Алгебра и математический анализ. 10 кл.: Учеб. пособие для шк. и кл. с углубл. изуч. математики. — М.: Мнемозина, 2014.				
		2. Виленкин Н. Я. и др. Алгебра и математический анализ. 11 кл.: Учеб. пособие для шк. и кл. с углубл. изуч. математики. — М.: Мнемозина, 2014.				
		3. Колягин Ю. М., Ткачева М. В., Федорова Н. Е. и др. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и углубленный. уровень. — М.: Просвещение, 2011.				
		4. Колягин Ю. М., Ткачева М. В., Федорова Н. Е. и др. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и углубленный. уровень. — М.: Просвещение, 2011.				
		5. Пратусевич М. Я. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: профил. уровень. — М.: Просвещение, 2009.				
		6.Пратусевич М. Я. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: профил. уровень. — М.: Просвещение, 2010.				
		7. Шарыгин И. Φ . Математика: Решение задач: 10 класс. — М.: Просвещение, 2007.				
		8. <i>Шарыгин И. Ф.</i> Математика: Решение задач: 11 класс. — М.: Просвещение, 2007.				
		Дополнительная литература				
		9. <i>Ануфриенко С. А.</i> и др. Сборник задач по алгебре и началам анализа / СУНЦ УрГУ. – Екатеринбург, 2019.				
		10. Математика / Отделение математических наук РАН; Московский центр непрерывного математического образования [Электронный ресурс] — URL: http://www.math.ru (дата обращения: 19.05.2025).				
		11. Московский институт открытого образования [Электронный ресурс] — URL: http://www.mioo.ru (дата обращения: 19.05.2025).				
		12. Московский центр непрерывного математического образования [Электронный ресурс] — URL: http://www.mccme.ru (дата обращения: 19.05.2025).				

		13. Портал информационно-образовательных ресурсов / Уральский федеральный университет имени первого Президента России Б. Н. Ельцина [Электронный ресурс] — URL: http://study.urfu.ru (дата обращения: 19.05.2025).						
		14. Расин В. В. Лекции по алгебре: Элементы теории множеств. Натуральные и целые числа. Неравенства. Отображения множеств. Числовые функции: Учеб. пособие / СУНЦ УрГУ. – Екатеринбург, 2005.						
	Модуль 2. Геометрия							
11	Планиметрия	Основные понятия и аксиомы планиметрии. Луч, отрезок, полу- плоскость. Сонаправленность лучей на прямой. Угол. Прямой угол, пер- пендикулярность прямых. Измерение отрезков и углов. Окружность, круг, дуга, хорда, сектор, сегмент, секущая, касательная.						
		Центральные и вписанные углы. Величина дуги. Теоремы об углах и хордах.						
		Многоугольник, выпуклый многоугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники: расположение центров окружностей, критерии для четырехугольников, формула для радиуса вписанной окружности. Теорема Птолемея.						
		Треугольник. Теоремы синусов и косинусов. Площадь треугольника. Формула для радиуса описанной окружности. Вневписанные окружности. Формула Герона. Медианы, биссектрисы и высоты треугольника, их свойства и формулы длины. Ортоцентр треугольника. Теоремы Чевы и Менелая.						
12	Преобразования плоскости	Преобразования, композиция преобразований. Преобразование, обратное к данному. Понятие о группе преобразований.						
		Движения, группа движений плоскости. Неподвижные точки движения. Теорема о движении с двумя неподвижными точками. Разложение движения в композицию осевых симметрий. Свойство подвижности. Классификация движений (теорема Шаля). Группа симметрий плоской фигуры. Нахождение группы симметрий правильного <i>п</i> -угольника. [Флаги, определение ориентации плоскости. Сохраняющие и меняющие ориентацию движения.]						
		Гомотетия. Преобразование подобия. Разложение подобия в композицию движения и гомотетии. Прямая Эйлера и окружность девяти точек.						
13	Основные понятия стереометрии. Параллельность и перпендикулярность	Основные понятия и аксиомы стереометрии; их следствия. Взаимное расположение прямых в пространстве. Параллельные прямые. Транзитивность отношения параллельности прямых в пространстве. Скрещивающиеся прямые. Признак скрещивающихся прямых. Взаимное расположение прямой и плоскости. Признак параллельности прямой и плоскости. Взаимное расположение двух плоскостей. Признак параллельности двух плоскостей. Теоремы о параллельных плоскостях.						
		Перпендикулярность прямой и плоскости. Критерий перпендикулярности прямой и плоскости. Теорема о трех перпендикулярах.						
		Понятие многогранника. Пирамида и призма, их элементы. Сечения тетраэдра и параллелепипеда: метод следов, метод внутреннего проектирования, метод центрального проектирования. [Графы на плоскости и на сфере.] Теорема Эйлера о графах на сфере. Правильные многогранники и их классификация.						
14	Векторы и координаты	Направленные отрезки. Векторы. Длины векторов, сонаправленность, коллинеарность. Действия над векторами (сложение, вычитание, умножение на число), их свойства. Критерий коллинеарности ненулевых векторов. Компланарность векторов, критерий компланарности ненулевых векторов.						
		Базис прямой, плоскости и пространства. Системы координат. Координаты вектора в базисе. Прямоугольные координаты. Проекции векторов. Координатные формулы: середины отрезка, деления отрезка в						
		6						

	1					
		данном отношении, длины вектора, расстояния между точками.				
		Угол между векторами. Скалярное произведение векторов, его свойства. Уравнение сферы. Вычисление углов. Уравнения прямой и плоскости. Расстояние от точки до плоскости. Аналитические условия перпендикулярности и параллельности прямых и плоскостей. Координатное уравнение сферы. [Векторное и смешанное произведения.]				
15	Плоские кривые. Площадь и объем	[Кривые, способы из задания. Спрямляемые кривые. Достаточное условие спрямляемости. Спрямляемость окружности, ее длина.				
		Многоугольные фигуры. Площадь на множестве многоугольных фигур и ее свойства. Квадрируемые фигуры. Критерии квадрируемости. Изменение площади квадрируемых фигур при ортогональном проектировании и при преобразованиях подобия. Площадь сектора и круга.]				
		Многогранные тела. Объем на множестве многогранных тел и его свойства. Объем призмы. Площадь поверхности призмы. Пирамида, вычисление ее объема. Усеченная пирамида, ее элементы. Нахождение объема усеченной пирамиды.				
		Тела вращения. Цилиндр и конус, их элементы. Вычисление объемов цилиндра, конуса, усеченного конуса, а также площади их поверхности. [Конические сечения: эллипс, парабола и гипербола.] Объем шара, нахождение площади поверхности сферы («метод окрашивания»). Шаровой сегмент, его объем и площадь поверхности.				
	Перечень рекомендуемых	Основная литература				
	методических материалов, литературы, Интернетресурсов	1. Атанасян Л. С. и др. Геометрия: Учеб. для $10-11$ кл. сред. шк. – М.: Просвещение, 2012 .				
		2. <i>Калинин А. Ю., Терешин Д. А.</i> Геометрия: 10–11 классы. — М.: МЦНМО, 2011.				
		3. <i>Понарин Я. П.</i> Элементарная геометрия: в 3 т. – М.: МЦНМО, 2003–2009.				
		4. <i>Прасолов В. В.</i> Задачи по планиметрии: в 2 ч. – М.: МЦНМО, 2006. 5. <i>Шарыгин И. Ф.</i> Математика: Решение задач: 10 класс. — М.: Просвещение, 2007.				
		6. Шарыгин И. Φ . Математика: Решение задач: 11 класс. — М.: Просвещение, 2007.				
		Дополнительная литература				
		7. <i>Ануфриенко С. А.</i> и др. Сборник задач геометрии / СУНЦ УрГУ. – Екатеринбург, 2019.				
		8.3адачи / Московский центр непрерывного математического образования; ГОУ города Москвы ЦО № 57 «Пятьдесят седьмая школа» [Электронный ресурс] — URL: http://problems.ru (дата обращения: 19.05.2025).				
		9. Расин В. В. Лекции по геометрии: Аксиомы планиметрии. Преобразования плоскости: Учеб. пособие / СУНЦ УрГУ. — Екатеринбург, 2006.				
		Модуль 3. Вероятность и статистика				
16	Элементы комбинаторики	Отображения одного конечного множества в другое, их количество. Размещения с повторениями. Инъективные отображения одного конечного множества в другое, их количество. Размещения без повторений и перестановки. Сочетания, биномиальные коэффициенты и их свойства. Треугольник Паскаля. Бином Ньютона.				
17	Элементы теории вероятностей и статистики	Вероятностное пространство: современные определения (общее и дискретное). Классическое определение вероятности. Вероятность суммы событий (формула включений и исключений), вероятность противоположного события. Независимость событий.				
	-					

Модуль 4. Обобщение и систематизация знаний

21	Повторение. Подготовка к итоговой аттестации	Повторение изученных тем программы. Обобщение, углубление и систематизация знаний. Подготовка к итоговой аттестации		
	Перечень рекомендуемых методических материалов, литературы, Интернетресурсов	Основная литература 1. Ткачук В. В. Математика абитуриенту. – М.: МЦНМО, 2006. 2. Шарыгин И. Ф. Математика: Решение задач: 10 класс. — М.: Просвещение, 2007. 3. Шарыгин И. Ф. Математика: Решение задач: 11 класс. — М.: Просвещение, 2007.		
		Дополнительная литература 4. Решу ЕГЭ: Математика / Д. Гущин [Электронный ресурс] — URL: http://reshuege.ru (дата обращения: 19.05.2025). 5. Сайт Александра Ларина [Электронный ресурс] — URL: http://alexlarin.net (дата обращения: 19.05.2025).		

3. Планируемые результаты освоения программы

У обучающегося будут сформированы следующие предметные результаты:

1) по модулю «Алгебра и начала анализа»:

свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты, иррациональное число, множества рациональных и действительных чисел, модуль действительного числа;

свободно оперировать понятиями: натуральное и целое число, множества натуральных и целых чисел, использовать признаки делимости целых чисел, НОД и НОК натуральных чисел для решения задач, применять алгоритм Евклида;

свободно оперировать понятием остатка по модулю, записывать натуральные числа в различных позиционных системах счисления;

свободно оперировать понятиями: комплексное число и множество комплексных чисел, представлять комплексные числа в алгебраической и тригонометрической форме, выполнять арифметические операции с ними и изображать на координатной плоскости;

применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни;

свободно оперировать понятием: степень с целым показателем, использовать подходящую форму записи действительных чисел для решения практических задач и представления данных;

свободно оперировать понятием: арифметический корень натуральной степени;

свободно оперировать понятием: степень с рациональным показателем; свободно оперировать понятиями: логарифм числа, десятичные и натуральные логарифмы;

свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента; оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента; свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные

уравнения и уравнения-следствия, равносильные неравенства;

применять различные методы решения рациональных и дробно-рациональных уравнений, применять метод интервалов для решения неравенств;

свободно оперировать понятиями: многочлен от одной переменной, многочлен с целыми коэффициентами, корни многочлена, применять деление многочлена на многочлен с остатком, теорему Безу и теорему Виета для решения задач;

использовать свойства действий с корнями для преобразования выражений;

выполнять преобразования числовых выражений, содержащих степени с рациональным показателем;

использовать свойства логарифмов для преобразования логарифмических выражений;

свободно оперировать понятиями: иррациональные, показательные и логарифмические уравнения, находить их решения с помощью равносильных переходов или осуществляя проверку корней;

применять основные тригонометрические формулы для преобразования тригонометрических выражений;

свободно оперировать понятием: тригонометрическое уравнение, применять необходимые формулы для решения основных типов тригонометрических уравнений;

свободно оперировать понятиями: иррациональные, показательные и логарифмические неравенства, находить их решения с помощью равносильных переходов;

осуществлять отбор корней при решении тригонометрического уравнения;

свободно оперировать понятием тригонометрическое неравенство, применять необходимые формулы для решения основных типов тригонометрических неравенств;

свободно оперировать понятиями: система и совокупность уравнений и неравенств, равносильные системы и системы-следствия, находить решения системы и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений и неравенств;

решать рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения и неравенства, содержащие модули и параметры;

применять графические методы для решения уравнений и неравенств, а также задач с параметрами;

моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства и их системы по условию задачи, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат;

свободно оперировать понятиями: функция, способы задания функции, взаимно обратные функции, композиция функций, график функции, выполнять элементарные преобразования графиков функций;

свободно оперировать понятиями: область определения и множество значений функции,

нули функции, промежутки знакопостоянства;

свободно оперировать понятиями: чётные и нечётные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке;

свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем, график корня *n*-й степени как функции обратной степени с натуральным показателем;

оперировать понятиями: линейная, квадратичная и дробно-линейная функции, выполнять элементарное исследование и построение их графиков;

свободно оперировать понятиями: показательная и логарифмическая функции, их свойства и графики, использовать их графики для решения уравнений;

свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента;

использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни, выражать формулами зависимости между величинами;

свободно оперировать понятиями: арифметическая и геометрическая прогрессия, бесконечно убывающая геометрическая прогрессия, линейный и экспоненциальный рост, формула сложных процентов, иметь представление о константе;

использовать прогрессии для решения реальных задач прикладного характера;

строить графики композиции функций с помощью элементарного исследования и свойств композиции двух функций;

строить геометрические образы уравнений и неравенств на координатной плоскости;

свободно оперировать понятиями: графики тригонометрических функций;

применять функции для моделирования и исследования реальных процессов;

свободно оперировать понятиями: последовательность, способы задания последовательностей, монотонные и ограниченные последовательности, понимать основы зарождения математического анализа как анализа бесконечно малых;

свободно оперировать понятиями: непрерывные функции, точки разрыва графика функции, асимптоты графика функции;

свободно оперировать понятием: функция, непрерывная на отрезке, применять свойства непрерывных функций для решения задач;

свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции;

вычислять производные суммы, произведения, частного и композиции двух функций, знать производные элементарных функций;

использовать геометрический и физический смысл производной для решения задач; использовать производную для исследования функции на монотонность и экстремумы; находить наибольшее и наименьшее значения функции непрерывной на отрезке;

использовать производную для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах, для определения скорости и ускорения процесса, заданного формулой или графиком;

свободно оперировать понятиями: первообразная, определённый интеграл, находить первообразные элементарных функций и вычислять интеграл по формуле Ньютона~--- Лейбница; находить площади плоских фигур и объёмы тел с помощью интеграла;

иметь представление о математическом моделировании на примере составления дифференциальных уравнений;

решать прикладные задачи, в том числе социально-экономического и физического характера, средствами математического анализа.

свободно оперировать понятиями: множество, операции над множествами;

использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов;

свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства;

2) по модулю «Геометрия»:

свободно оперировать основными понятиями планиметрии и стереометрии при решении задач и проведении математических рассуждений;

применять аксиомы планиметрии, стереометрии и следствия из них при решении геометрических задач;

классифицировать взаимное расположение прямых в пространстве, плоскостей в пространстве;

свободно оперировать понятиями, связанными с углами в пространстве: между прямыми в пространстве, между прямой и плоскостью;

свободно оперировать понятиями, связанными с многогранниками;

свободно распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);

классифицировать многогранники, выбирая основания для классификации;

свободно оперировать понятиями, связанными с сечением многогранников плоскостью;

выполнять параллельное, центральное и ортогональное проектирование фигур на плоскость, выполнять изображения фигур на плоскости;

строить сечения многогранников различными методами, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу;

вычислять площади поверхностей многогранников (призма, пирамида), геометрических тел с применением формул;

свободно оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии, центр, ось и плоскость симметрии фигуры;

свободно оперировать понятиями, связанными с цилиндрической, конической и сферической поверхностями, объяснять способы получения;

оперировать понятиями, связанными с телами вращения: цилиндром, конусом, сферой и шаром;

распознавать тела вращения (цилиндр, конус, сфера и шар) и объяснять способы получения тел вращения;

классифицировать взаимное расположение сферы и плоскости;

вычислять величины элементов многогранников и тел вращения, объёмы и площади поверхностей многогранников и тел вращения, геометрических тел с применением формул;

свободно оперировать понятиями, связанными с комбинациями тел вращения и многогранников: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения;

вычислять соотношения между площадями поверхностей и объёмами подобных тел;

изображать изучаемые фигуры, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу, строить сечения тел вращения;

извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

свободно оперировать понятиями, соответствующими векторам и координатам в пространстве;

выполнять действия над векторами;

свободно оперировать понятием вектор в пространстве;

выполнять операции над векторами;

задавать плоскость уравнением в декартовой системе координат;

решать геометрические задачи на вычисление углов между прямыми и плоскостями, вычисление расстояний от точки до плоскости, в целом, на применение векторно-координатного метода при решении;

свободно оперировать понятиями, связанными с движением в пространстве, знать свойства движений;

выполнять изображения многогранником и тел вращения при параллельном переносе, центральной симметрии, зеркальной симметрии, при повороте вокруг прямой, преобразования подобия; строить сечения многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара;

использовать методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости;

решать задачи на доказательство математических отношений и нахождение геометрических величин, применяя известные методы при решении математических задач повышенного и высокого уровня сложности;

извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

применять полученные знания на практике: сравнивать и анализировать реальные ситуации, применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин;

иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий.

3) по модулю «Вероятность и статистика»:

свободно оперировать понятиями: случайный эксперимент (опыт), случайное событие, элементарное случайное событие (элементарный исход) случайного опыта, находить вероятности событий в опытах с равновозможными элементарными событиями;

находить и формулировать события: пересечение, объединение данных событий, событие, противоположное данному, использовать диаграммы Эйлера, координатную прямую для решения задач, пользоваться формулой сложения вероятностей для вероятностей двух и трех случайных событий;

оперировать понятиями: условная вероятность, умножение вероятностей, независимые события, дерево случайного эксперимента, находить вероятности событий с помощью правила умножения, дерева случайного опыта, использовать формулу полной вероятности, формулу Байеса при решении задач, определять независимость событий по формуле и по организации случайного эксперимента;

применять изученные комбинаторные формулы для перечисления элементов множеств, элементарных событий случайного опыта, решения задач по теории вероятностей.

4. Тематическое планирование

Приведенный ниже учебно-тематический план является примерным. Порядок изучения

тем, распределение тем между 10 и 11 классами, количество отводимого на них учебного времени определяются каждым учителем самостоятельно в зависимости от уровня подготовленности конкретного класса и других факторов.

В качестве ссылок на электронные образовательные ресурсы (ЭОР) приведены порядковые номера строк федерального перечня электронных образовательных ресурсов, допущенных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденного приказом Минпросвещения России от 02.08.2022 № 653.

26		Всего	В том числе:		Форма контр.	ЭОР	
№	№ Наименования модулей и тем		лекц.	практ.			
Модуль 1. Алгебра и начала анализа							
1	Ведение в теорию чисел	42	22	18	КР 2 ч	211 213	
2	Элементы теории множеств	20	12	6	КР 2 ч	211 213 214 215	
3	Числовые функции	6	6	0		211 213 214 215	
4	Многочлены	22	8	12	КР 2 ч	211 213 214 215	
5	Тригонометрия	30	10	18	КР 2 ч	211 213 214 215	
6	Уравнения, неравенства и системы	18	8	8	КР 2 ч	211 213 214 215	
7	Пределы. Непрерывность функции	32	18	12	КР 2 ч	211 213 214 215	
8	Показательные и логарифмические функции, уравнения и неравенства	28	10	14	КР 4 ч	211 213 214 215	
9	Производная	32	16	14	КР 2 ч	211 213 214 215	
10	Интеграл	22	12	8	КР 2 ч	211 213 214 215	
Модуль 2. Геометрия							
11	Планиметрия	54	30	18	КР 2 ч Колл. 4 ч.	211 212 214 215	
12	Преобразования плоскости	24	10	12	КР 2 ч	211 212 214 215	

№	Наименования модулей и тем	Всего час.	В том числе:		Форма	ЭОР	
71⊻			лекц.	практ.	контр.	30P	
13	Основные понятия стереометрии. Параллельность и перпендикулярность	44	14	24	КР 6 ч	211 212 214 215	
14	Векторы и координаты	58	26	28	КР 4 ч	211 212 214 215	
15	Плоские кривые. Площадь и объем	40	24	14	КР 2 ч	211 212 214 215	
Модуль 3. Вероятность и статистика							
21	Элементы комбинаторики	10	4	4	КР 2 ч	211 214 215	
22	Элементы теории вероятностей и математической статистики	6	2	2	КР 2 ч	211 214 215	
Модуль 4. Обобщение и систематизация знаний							
23	Повторение. Подготовка к итоговой аттестации	56	12	44	индив. задан.	211–215	
Итого		544	244	256	44 ч		

5. Промежуточная и итоговая аттестация

Формы аттестации: *промежуточная аттестация* — устный экзамен (в зимние сессии 10 и 11 класса, в летнюю сессию 10 класса); *итоговая аттестация* — единый государственный экзамен (после 11 класса).

Примерный список вопросов устных экзаменов

- 1. Множество натуральных чисел. Определение суммы натуральных чисел и доказательство ассоциативности этой операции.
 - 2. Коммутативность операции сложения натуральных чисел.
 - 3. Умножение натуральных чисел и его свойства.
 - 4. Порядок на N. Линейность порядка на N.
 - 5. Теорема о полноте порядка на N. Математическая индукция.
 - 6. Деление натуральных чисел. Свойства делимости. Простые числа.

Основная теорема арифметики.

- 7. Деление с остатком.
- 8. Наибольший общий делитель. Теорема о представлении НОД двух натуральных чисел.
 - 9. Алгоритм Евклида.
 - 10. Сравнения и их свойства.
 - 11. Полная система вычетов. Теорема Ферма.
 - 12. Функция Эйлера и ее свойства.
 - 13. Приведенная система вычетов. Теорема Эйлера.
 - 14. Решение сравнений первой степени.
 - 15. Решение линейных диофантовых уравнений.
 - 16. Операции над множествами и их свойства.
 - 17. Произведение множеств. Соответствия. Биекции и их свойства.
 - 18. Конечные множества.
 - 19. Степень множества и его мощность.
 - 20. Количество отображений одного конечного множества в другое. Размещения с

повторениями.

- 21. Количество взаимно однозначных отображений одного конечного множества в другое. Размещения. Перестановки.
 - 22. Сочетания. Свойства числа сочетаний.
 - 23. Бином Ньютона.
 - 24. Счетные множества. Теорема о бесконечных подмножествах N.
 - 25. Счетные объединения счетных множеств.
 - 26. Группы преобразований и движений плоскости.
 - 27. Теорема о движении с двумя неподвижными точками.
 - 28. Теорема о представлении.
 - 29. Свойство подвижности.
 - 30. Теорема Шаля.
 - 31. Несчетные множества. Теорема Кантора о степени множества.
 - 32. Теорема Кантора о несчетности R.
 - 33. Теорема о том, что мощность R равна c.
 - 34. Отношения на множестве. Отношения эквивалентности.
 - 35. Отношения порядка. Теорема о трансфинитной индукции.
 - 36. Кольцо многочленов от одной переменной.
 - 37. Деление многочлена на многочлен с остатком. Алгоритм

Евклида.

- 38. Корни многочлена. Теорема Безу. Схема Горнера.
- 39. Кратные корни многочлена. Теорема о разложении многочлена

на множители.

- 40. Теорема о том, что многочлен степени n может иметь не более n корней. Теорема Виета. Формулы сокращенного умножения.
- 41. Первая теорема о рациональных корнях многочлена с целыми коэффициентами.
- 42. Вторая теорема о рациональных корнях многочлена с целыми коэффициентами.
- 43. Лексикографический порядок.
- 44. Представление симметрического многочлена в виде

многочлена от элементарных симметрических.

- 45. Четные и нечетные функции. Периодические функции.
- 46. Обратная функция. Монотонные и строго монотонные функции.

- 47. Формулы сложения и следствия из них.
- 48. Формулы двойного и половинного аргумента. Формулы суммы и произведения.
 - 49. Функции $\sin x$ и $\cos x$, их свойства и графики.
 - 50. Функции tg x и ctg x, их свойства и графики.
 - 51. Обратные тригонометрические функции.
- 52. Равносильные уравнения. Основные способы преобразования уравнений.
- 53. Равносильные системы. Основные способы преобразования систем.
 - 54. Нестандартные способы решения уравнений.
 - 55. Гомотетия и ее свойства.
 - 56. Группа подобий. Теорема о представлении подобия.
 - 57. Прямая Эйлера и окружность девяти точек.
 - 58. Одинаковая ориентируемость флагов с общим центром.
 - Флаги с сонаправленными древками.
 Ориентация плоскости.
 - 60. Сохраняющие и меняющие ориентацию движения.
 - 61. Параллельные прямые. Скрещивающиеся прямые.
 - 62. Параллельность прямой и плоскости.
 - 63. Параллельные плоскости.
 - 64. Перпендикулярность прямой и плоскости.
- 65. Теорема о трех перпендикулярах: геометрическое и векторное доказательства.
 - 66. Теорема Эйлера о графах на сфере.
 - 67. Теорема Эйлера о правильных многогранниках.
 - 68. Направление на плоскости и в пространстве.
 - 69. Направленные отрезки и векторы. Сложение векторов.
 - 70. Умножение вектора на число.
- 71. Коллинеарность и компланарность векторов. Базис плоскости и пространства.
 - 72. Векторное уравнение прямой и плоскости. Параметрическое

и каноническое задание прямой в пространстве. Координатное уравнение прямой в плоскости.

- 73. Линейные множества. Координатное уравнение плоскости.
- 74. Проекция одного вектора на другой и ее свойства.
- 75. Скалярное произведение и его свойства.
- 76. Вычисление скалярного произведения в ОНБ. Координатное уравнение сферы.
 - 77. Нормаль к плоскости.
- 78. Координатное уравнение плоскости. Вычисление расстояния от точки до плоскости.
- 79. Координатное уравнение прямой в ОНБ, нахождение угла между прямыми (случай плоскости).
- 80. Нахождение расстояния от точки до прямой в пространстве. Расстояние между скрещивающимися прямыми.
 - 81. Неравенство Коши-Буняковского. Метрика в евклидовом пространстве.
 - 82. Предел последовательности точек метрического пространства, его единственность. Ограниченность сходящейся последовательности.
 - 83. Предел последовательности вещественных чисел. Существование и единственность супремума у ограниченного сверху множества вещественных чисел. Лемма Вейерштрасса о монотонной и ограниченной последовательности.
 - 84. Число е.
 - 85. Бесконечно малые последовательности и их свойства.
 - 86. Пределы и арифметические операции.
 - 87. Переход к пределу в неравенствах.
 - 88. Новая формула для приближения числа е.
- 89. Лемма Кантора о стягивающейся последовательности отрезков.
 - 90. Лемма Больцано-Вейерштрасса.
 - 91. Лемма Бореля-Лебега.
- 92. Предел функции в точке. Ограниченность имеющей предел функции на некоторой окрестности.
 - 93. Пределы и арифметические операции. Пределы и

неравенства.

- 94. Первый замечательные предел.
- 95. Предел функции на бесконечности. Второй замечательный предел.
 - 96. Третий замечательный предел.
 - 97. Определение связного множества. Связность отрезка.
 - 98. Непрерывные образы связных множеств.

6. Оценка личных учебных достижений обучающихся

Текущая оценка

Текущая оценка представляет собой непрерывный (в ходе изучения каждой темы) мониторинг учебных достижений обучающихся, свидетельствующих о сформированности у них предусмотренных настоящей программой знаний, умений, навыков, универсальных учебных действий, иных образовательных компетентностей (далее — образовательные результаты).

Текущая оценка проводится в форме оценивания результатов устных ответов обучающихся, их письменных (домашних, самостоятельных, проверочных, контрольных и иных) работ, результатов их участия в специальных аттестационных процедурах (коллоквиумах, зачетах и пр.). Отметки по результатам текущей оценки выставляются в соответствии со следующими требованиями:

отметка «5»: обучающийся в полной мере демонстрирует образовательные результаты, являющиеся предметом оценки;

отметка «4»: обучающийся демонстрирует образовательные результаты, являющиеся предметом оценки, при этом допускает незначительные ошибки (недочеты), которые самостоятельно исправляет при указании на них учителем (преподавателем);

отметка «**3**»: обучающийся демонстрирует базовые образовательные результаты, являющие предметом оценки, при этом, возможно, допускает ошибки, которые может исправить только при значительной помощи учителя (преподавателя);

отметка «2»: обучающийся демонстрирует недостижение большой части образовательных результатов, являющихся предметом оценки, допускает частые и грубые ошибки, которые не может исправить даже с помощью учителя (преподавателя).

Отметка «2» выставляется также в том случае, когда обучающийся не сдал письменную работу в установленный учителем (преподавателем) срок, либо отказался от устного ответа на

уроке или специальной аттестационной процедуре (коллоквиуме, зачете и пр.).

Развернутые критерии выставления отметок за отдельные виды учебной деятельности обучающихся разрабатываются каждым учителем (преподавателем), утверждаются на заседании кафедры не позднее начала учебного года и доводятся до сведения всех обучающихся в первую неделю учебного года.

Итоговая аттестационная процедура за семестр

В конце учебного полугодия (в период экзаменационной сессии) проводится итоговая аттестационная процедура за семестр в форме устного экзамена (см. раздел 5 настоящей программы). Критерии оценки результатов итоговой аттестационной процедуры разрабатываются каждым учителем (преподавателем), утверждаются заведующим кафедрой и доводятся до сведения обучающихся не позднее чем за неделю до ее проведения.

В конце второго учебного полугодия 11 класса итоговая аттестационная процедура не проводится.