

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» (УрФУ) Специализированный учебно-научный центр (СУНЦ УрФУ)

УТВЕРЖДАЮ

Заместитель директора по образовательной деятельности по организации приёма и довузовскому образования образования

Е.С. Авраменко

« » 2025

РАБОЧАЯ ПРОГРАММА

интегрированного курса «Физика. Физика. Сложные задачи»

10 и 11 класс профиль физико-математический (трех- и четырех – годичные потоки) углублённый уровень срок реализации 2 года

Рассмотрено на заседании кафедры физики и астрономии Протокол № 3/25 от «13» июня 2025г. Рекомендовано Ученым советом СУНЦ УрФУ Протокол № 6 от «19 »июня 2025г.

СОГЛАСОВАНО:

Директор СУНЦ УрФУ

Академический директор СУНЦ УрФУ

Л.Е. Манылова

М.С. Рябцев

Екатеринбург, 2025

Пояснительная записка

Программа по физике для 10 и 11 класса физико-математического профиля составлена на основе положений и требований к результатам освоения на углублённом уровне основной образовательной программы, представленных в ФГОС ООО, а также с учётом федеральной рабочей программы воспитания и Концепции преподавания учебного предмета «Физика». Содержание программы по физике направлено на удовлетворение повышенных образовательных запросов обучающихся, стремящихся к более глубокому освоению физических знаний, и на обеспечение естественно-научной грамотности обучающихся, формированию мотивации в получению высшего образования физической и инженернофизической направленности.

В программе по физике учитываются возможности учебного предмета в реализации требований ФГОС ООО к планируемым личностным и метапредметным результатам обучения, а также межпредметные связи естественно-научных учебных предметов на уровне основного общего образования.

Программа устанавливает распределение учебного материала по месяцам обучения, предлагает примерную последовательность изучения тем, основанную на логике развития предметного содержания и учёте особенностей прохождения разделов математики.

Физика является системообразующим для естественнонаучных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, астрономией и физической географией, вносит вклад в естественнонаучную картину мира, предоставляет наиболее ясные образцы применения научного метода познания, то есть способа получения достоверных знаний о мире. Одна из главных задач физического образования в структуре общего образования состоит в формировании естественно-научной грамотности и интереса к науке, технике и инженерным наукам у обучающихся.

Изучение физики на углублённом уровне предполагает уверенное владение следующими компетентностями, характеризующими естественнонаучную грамотность:

- научно объяснять явления;
- оценивать и понимать особенности научного исследования;
- интерпретировать данные и использовать научные доказательства для получения выводов.

Цели изучения физики на углублённом уровне:

- развитие интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование умений применять физические знания и научные доказательства для объяснения окружающих явлений;
- формирование представлений о роли физики для развития других естественных наук, техники и технологий;
- развитие представлений о возможных сферах будущей профессиональной деятельности, связанной с физикой, подготовка к дальнейшему обучению в этом направлении;
- формирование готовности к дальнейшему изучению физики на углублённом уровне в рамках соответствующих профилей обучения на уровне среднего общего образования.

Достижение этих целей программы на уровне основного общего образования обеспечивается решением следующих задач:

- приобретение знаний о дискретном строении вещества, механических, тепловых, электромагнитных и квантовых явлениях;
- приобретение умений анализировать и объяснять физические явления на основе изученных физических законов и закономерностей;
- освоение методов решения расчётных и качественных задач, требующих создания и использования физических моделей, включая творческие и практикоориентированные задачи;
- развитие исследовательских умений: наблюдать явления и измерять физические величины, выдвигать гипотезы и предлагать экспериментальные способы их проверки, планировать и проводить опыты, экспериментальные исследования, анализировать полученные данные и делать выводы;

- освоение приёмов работы с информацией физического содержания, включая информацию о современных достижениях физики, интерпретация и критическое оценивание информации;
- знакомство со сферами профессиональной деятельности, связанными с физикой, и современными технологиями, основанными на достижениях физической науки.

Общее число часов, рекомендованных для изучения физики на углублённом уровне в 10 классе – 236 часов (7 часов в неделю), в 11 классе – 210 часов (7 часов в неделю).

Предлагаемый в программе по физике перечень лабораторных и практических работ является рекомендательным, учитель делает выбор проведения лабораторных работ и опытов с учётом индивидуальных особенностей обучающихся, списка экспериментальных заданий, предлагаемых в рамках основного государственного экзамена по физике.

Содержание учебного предмета

No	Наименование	Содержание раздела						
	модуля/курса							
1	Геометрическая	Отражение света. Построение изображения в плоском зеркале						
	оптика	и системе зеркал. Сферическое зеркало. Параболическое						
		зеркало. Преломление света в различных системах. Формула						
		линзы. Построение изображения в линзе. Глаз как оптический						
		прибор. Системы линз и зеркал.						
2	Термодинамика и	Основы молекулярно-кинетической теории строения вещества.						
	молекулярная	Взаимодействие атомов и молекул. Размеры. Движение						
	физика	молекул. Измерение скоростей молекул. Опыты Штерна и						
		Ламмерта. Газовые законы. Опыты Шарля, Бойля, Гей-						
		Люссака. Идеальный газ - модель газа. Изопроцессы.						
		Внутренняя энергия газа. Температура. Работа газа. Первое						
		начало термодинамики. Теплоёмкость газа						
		Циклические процессы. КПД цикла. Внутренняя энергия как						
		функция состояния. Тепловые машины. КПД цикла.						
		Адиабатный процесс. Уравнение Майера. Цикл Карно.						
		Теоремы Карно. Равновесные и неравновесные						
		термодинамические процессы. Второе начало термодинамики.						

и несамостоятельный разряд. Ток в полупроводниках.						
Полупроводниковые приборы*						
Примечание: Темы, отмеченные символом ** могут быть						
частично или полностью перенесены на 11 класс						

No॒	Наименование	Содержание раздела						
	модуля/курса							
1	Магнитостатика	Магнитное взаимодействие. Магнитное поле заряда,						
		проводника, витка с током. Сила Ампера. Сила Лоренца.						
		Движение заряда в магнитном поле. Устройства. Рамка с током						
		в магнитном поле. Теорема о циркуляции. Расчёт магнитных						
		полей протяженных токов. Индуктивность. Взаимная						
		индуктивность. Система уравнений магнито- и электро-						
		статики						
2	Электромагнетизм	Электромагнитная индукция. Закон электромагнитной						
		индукции. Правило Ленца. Явление самоиндукции.						
		Установление тока в цепи с индуктивностью. Измерение						
		индуктивности катушки. Ток смещения. Система уравнений						
		Максвелла в интегральной форме						
3	Колебания и волны	Колебательное движение. Уравнение гармонических						
		колебаний. Пружинный и математический маятник.						
		Идеальный колебательный контур. Векторные диаграммы.						
		Энергия колебаний. Фазовый портрет маятника. Затухающие						
		колебания. Вязкое трение. Сухое трение. Вынужденные						
		механические колебания. Резонанс. Вынужденные						
		электрические колебания. Резонанс токов. Резонанс						
		напряжений. Сложение колебаний. Биения. Фигуры Лиссажу.						
		Волновое движение. Продольные и поперечные волны.						
		Скорость распространения волн. Эффект Доплера. Стоячие						
		волны. Звуковые волны. Звучание музыкальных инструментов.						

		Принцип Гюйгенса. Отражение и преломление волн. Закон					
		преломления. Показатель преломления. Принципы эхолокации					
4	Оптика	Преломление света на сферической поверхности. Световые линзы. Формула линзы. Оптические приборы. Дифракция и интереференция волн. Когерентные волны. Определение длины волны. Шкала электромагнитных волн. Особенности дифрации и интерференции света. Когерентность световых волн. Дифракционная решетка. Распространение волн в неоднородных средах. Поляризация и дисперсия. Фотоэффект. Световые кванты. Уравнение Эйнштейна для фотоэффекта					
5	Атомная и ядерная	Элементы сто. Преобразования Лоренца. Следствия из					
	физики, элементы	преобразований Лоренца. Строение атома. Атом водорода по					
	теории	Бору. Опыты Франка и Герлаха. Излучение и поглощение					
	относительности	света. Спектральные приборы.					
		Естественная и искусственная радиоактивность. Ядерные реакции. Энергетический выход реакции. Реакции деления и синтеза ядер. Элементы квантовой теории строения вещества					
6	Повторение,	Все темы из кодификатора ЕГЭ					
	подготовка к ЕГЭ						

Планируемые предметные результаты

К концу обучения в 10 классе предметные результаты на углубленном уровне должны отражать сформированность у обучающихся умений:

понимать роль физики в экономической, технологической, экологической, социальной и этической сферах деятельности человека, роль и место физики в современной научной картине мира, значение описательной, систематизирующей, объяснительной и прогностической функций физической теории — механики, молекулярной физики и термодинамики, роль физической теории в формировании представлений о физической картине мира;

различать условия применимости моделей физических тел и процессов (явлений): инерциальная система отсчёта, абсолютно твёрдое тело, материальная точка, равноускоренное движение, свободное падение, абсолютно упругая деформация, абсолютно упругое и абсолютно неупругое столкновения, модели газа, жидкости и твёрдого (кристаллического) тела, идеальный газ, точечный заряд, однородное электрическое поле;

различать условия (границы, области) применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;

анализировать и объяснять механические процессы и явления, используя основные положения и законы механики (относительность механического движения, формулы кинематики равноускоренного движения, преобразования Галилея для скорости и перемещения, законы Ньютона, принцип относительности Галилея, закон всемирного тяготения, законы сохранения импульса и механической энергии, связь работы силы с изменением механической энергии, условия равновесия твёрдого тела), при этом использовать математическое выражение законов, указывать условия применимости физических законов: преобразований Галилея, второго и третьего законов Ньютона, законов сохранения импульса и механической энергии, закона всемирного тяготения;

анализировать и объяснять тепловые процессы и явления, используя основные положения МКТ и законы молекулярной физики и термодинамики (связь давления идеального газа со средней кинетической энергией теплового движения и концентрацией его молекул, связь температуры вещества со средней кинетической энергией теплового движения его частиц, связь давления идеального газа с концентрацией молекул и его температурой, уравнение Менделеева—Клапейрона, первый закон термодинамики, закон сохранения энергии в тепловых процессах), при этом использовать математическое выражение законов, указывать условия применимости уравнения Менделеева—Клапейрона;

анализировать и объяснять электрические явления, используя основные положения и законы электродинамики (закон сохранения электрического заряда, закон Кулона, потенциальность электростатического поля, принцип суперпозиции электрических полей, при этом указывая условия применимости закона Кулона, а также практически важные соотношения: законы Ома для участка цепи и для замкнутой электрической цепи, закон Джоуля—Ленца, правила Кирхгофа, законы Фарадея для электролиза);

описывать физические процессы и явления, используя величины: перемещение, скорость, ускорение, импульс тела и системы тел, сила, момент силы, давление, потенциальная энергия, кинетическая энергия, механическая энергия, работа силы, центростремительное ускорение, сила тяжести, сила упругости, сила трения, мощность, энергия взаимодействия тела с Землёй вблизи её поверхности, энергия упругой деформации пружины, количество теплоты, абсолютная температура тела, работа в термодинамике, внутренняя энергия идеального одноатомного газа, работа идеального газа, относительная влажность воздуха, КПД идеального теплового двигателя; электрическое поле, напряжённость электрического поля, напряжённость поля точечного заряда или заряженного шара в вакууме и в диэлектрике,

потенциал электростатического поля, разность потенциалов, электродвижущая сила, сила тока, напряжение, мощность тока, электрическая ёмкость плоского конденсатора, сопротивление участка цепи с последовательным и параллельным соединением резисторов, энергия электрического поля конденсатора;

объяснять особенности протекания физических явлений: механическое движение, тепловое движение частиц вещества, тепловое равновесие, броуновское движение, диффузия, испарение, кипение и конденсация, плавление и кристаллизация, направленность теплопередачи, электризация тел, эквипотенциальность поверхности заряженного проводника;

проводить исследование зависимости одной физической величины от другой с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде графиков с учётом абсолютных погрешностей измерений, делать выводы по результатам исследования;

проводить косвенные измерения физических величин, при этом выбирать оптимальный метод измерения, оценивать абсолютные и относительные погрешности прямых и косвенных измерений; проводить опыты по проверке предложенной гипотезы: планировать эксперимент, собирать экспериментальную установку, анализировать полученные результаты и делать вывод о статусе предложенной гипотезы;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, практикума и учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной и неявно заданной физической моделью: на основании анализа условия обосновывать выбор физической модели, отвечающей требованиям задачи, применять формулы, законы, закономерности и постулаты физических теорий при использовании математических методов решения задач, проводить расчёты на основании имеющихся данных, анализировать результаты и корректировать методы решения с учётом полученных результатов;

решать качественные задачи, требующие применения знаний из разных разделов курса физики, а также интеграции знаний из других предметов естественно-научного цикла: выстраивать логическую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать теоретические знания для объяснения основных принципов работы измерительных приборов, технических устройств и технологических процессов;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

анализировать и оценивать последствия бытовой и производственной деятельности человека, связанной с физическими процессами, с позиций экологической безопасности, представлений о рациональном природопользовании, а также разумном использовании достижений науки и технологий для дальнейшего развития человеческого общества;

применять различные способы работы с информацией физического содержания с использованием современных информационных технологий, при этом использовать современные информационные технологии для поиска, переработки и предъявления учебной и научно-популярной информации, структурирования и интерпретации информации, полученной из различных источников, критически анализировать получаемую информацию и оценивать её достоверность как на основе имеющихся знаний, так и на основе анализа источника информации;

проявлять организационные и познавательные умения самостоятельного приобретения новых знаний в процессе выполнения проектных и учебно-исследовательских работ;

работать в группе с исполнением различных социальных ролей, планировать работу группы, рационально распределять деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы;

проявлять мотивацию к будущей профессиональной деятельности по специальностям физикотехнического профиля.

К концу обучения в 11 классе предметные результаты на углубленном уровне должны отражать сформированность у обучающихся умений:

понимать роль физики в экономической, технологической, социальной и этической сферах деятельности человека, роль и место физики в современной научной картине мира, роль астрономии в практической деятельности человека и дальнейшем научно-техническом развитии, значение описательной, систематизирующей, объяснительной и прогностической функций физической теории — электродинамики, специальной теории относительности, квантовой физики, роль физической теории в формировании представлений о физической картине мира, место физической картины мира в общем ряду современных естественно-научных представлений о природе;

различать условия применимости моделей физических тел и процессов (явлений): однородное электрическое и однородное магнитное поля, гармонические колебания, математический маятник, идеальный пружинный маятник, гармонические волны, идеальный колебательный контур, тонкая линза, моделей атома, атомного ядра и квантовой модели света;

различать условия (границы, области) применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;

анализировать и объяснять электромагнитные процессы и явления, используя основные положения и законы электродинамики и специальной теории относительности (закон сохранения электрического заряда, сила Ампера, сила Лоренца, закон электромагнитной индукции, правило Ленца, связь ЭДС самоиндукции в элементе электрической цепи со скоростью изменения силы тока, постулаты специальной теории относительности Эйнштейна);

анализировать и объяснять квантовые процессы и явления, используя положения квантовой физики (уравнение Эйнштейна для фотоэффекта, первый и второй постулаты Бора, принцип соотношения неопределённостей Гейзенберга, законы сохранения зарядового и массового чисел и энергии в ядерных реакциях, закон радиоактивного распада);

описывать физические процессы и явления, используя величины: напряжённость электрического поля, потенциал электростатического поля, разность потенциалов, электродвижущая сила, индукция магнитного поля, магнитный поток, сила Ампера, индуктивность, электродвижущая сила самоиндукции, энергия магнитного поля проводника с током, релятивистский импульс, полная энергия, энергия покоя свободной частицы, энергия и импульс фотона, массовое число и заряд ядра, энергия связи ядра;

объяснять особенности протекания физических явлений: электромагнитная индукция, самоиндукция, резонанс, интерференция волн, дифракция, дисперсия, полное внутреннее отражение, фотоэлектрический эффект (фотоэффект), альфа- и бета-распады ядер, гамма-излучение ядер, физические принципы спектрального анализа и работы лазера;

определять направление индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить изображение, создаваемое плоским зеркалом, тонкой линзой, и рассчитывать его характеристики;

применять основополагающие астрономические понятия, теории и законы для анализа и объяснения физических процессов, происходящих в звёздах, в звёздных системах, в межгалактической среде; движения небесных тел, эволюции звёзд и Вселенной;

проводить исследование зависимостей физических величин с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде графиков с учётом абсолютных погрешностей измерений, делать выводы по результатам исследования;

проводить косвенные измерения физических величин, при этом выбирать оптимальный метод измерения, оценивать абсолютные и относительные погрешности прямых и косвенных измерений;

проводить опыты по проверке предложенной гипотезы: планировать эксперимент, собирать экспериментальную установку, анализировать полученные результаты и делать вывод о статусе предложенной гипотезы;

описывать методы получения научных астрономических знаний;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, практикума и учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной и неявно заданной физической моделью: на основании анализа условия выбирать физические модели, отвечающие требованиям задачи, применять формулы, законы, закономерности и постулаты физических теорий при использовании математических методов решения задач, проводить расчёты на основании имеющихся данных, анализировать результаты и корректировать методы решения с учётом полученных результатов;

решать качественные задачи, требующие применения знаний из разных разделов курса физики, а также интеграции знаний из других предметов естественно-научного цикла: выстраивать логическую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать теоретические знания для объяснения основных принципов работы измерительных приборов, технических устройств и технологических процессов; приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

анализировать и оценивать последствия бытовой и производственной деятельности человека, связанной с физическими процессами, с позиций экологической безопасности, представлений о рациональном природопользовании, а также разумном использовании достижений науки и технологий для дальнейшего развития человеческого общества;

применять различные способы работы с информацией физического содержания с использованием современных информационных технологий, при этом использовать современные информационные технологии для поиска, переработки и предъявления учебной и научно-популярной информации, структурирования и интерпретации информации, полученной из различных источников, критически анализировать получаемую информацию и оценивать её достоверность как на основе имеющихся знаний, так и на основе анализа источника информации;

проявлять организационные и познавательные умения самостоятельного приобретения новых знаний в процессе выполнения проектных и учебно-исследовательских работ; работать в группе с исполнением различных социальных ролей, планировать работу группы, рационально распределять деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы; проявлять мотивацию к будущей профессиональной деятельности по специальностям физикотехнического профиля.

Тематическое планирование

№	Наименование	Всего	В том		Форма контроля	ЭОР
	тем/модулей	часов	числе:			(электронные
						образовательные ресурсы)
			Лекц	Семи		
			ии	нары		
1	Геометрическая	24	8	16	Самостоятельные	Система дистанционного
	оптика				текущие работы и	обучения СУНЦ УрФУ
					итоговая	https://lycedu.urfu.ru/login/index.p
					контрольная работа	<u>hp;</u>
						Уроки Павла Виктора
2	Термодинамика	90	30	60	Самостоятельные	https://rutube.ru/channel/31771887/
	•				текущие работы и	;
	и молекулярная				итоговая	проект МФТИ Физтех регионам
	физика				контрольная работа.	https://os.mipt.ru/#/,
					Экзамен	проект МГУ https://teach-in.ru/ ;
3	Электростатика	36	12	24	Самостоятельные	проект МИФИ
					текущие работы и	видеодемонстрация
					итоговая	экспериментов
					контрольная работа.	https://www.youtube.com/watch?v
					Экзамен	=_XIJwF2zPnI
4	Постоянный	48	16	32	Самостоятельные	
	электрический				текущие работы и	
	ток				итоговая	
	IUK				контрольная работа.	
					Экзамен	
5	Лабораторный	38		38	зачет	
	практикум					

No	Наименование	Всего	В том		Форма контроля	ЭОР
	тем/модулей	часов	числе:			(электронные
						образовательные ресурсы)
			Лекц	Семи		
			ии	нары		
1	Магнитостатика	24	8	16	Самостоятельные	Система дистанционного
					текущие работы и	обучения СУНЦ УрФУ
					итоговая	https://lycedu.urfu.ru/login/index.
					контрольная работа	<u>php;</u>
2	Электромагнетиз	24	8	16	Самостоятельные	Уроки Павла Виктора
	M				текущие работы и	https://rutube.ru/channel/3177188
					итоговая	<u>7/;</u>
					контрольная работа.	проект МФТИ Физтех
					Экзамен	регионам <u>https://os.mipt.ru/#/</u> ,
3	Колебания и	48	16	32	Самостоятельные	проект МГУ https://teach-in.ru/ ;
	волны				текущие работы и	проект МИФИ
					итоговая	видеодемонстрация
					контрольная работа.	экспериментов
					Экзамен	https://www.youtube.com/watch?
4	Оптика	42	14	28	Самостоятельные	<u>v=_XIJwF2zPnI</u>
					текущие работы и	
					итоговая	
					контрольная работа.	
					зачет	
5	Атомная и	36	12	24	Самостоятельные	
	ядерная физика,				работы	
	элементы теории					
	относительности					
6	Обобщающее	24	8	16	ГИА	https://fipi.ru/
	повторение.					<u> </u>
	_					
	Подготовка к					
	ЕГЭ					
7	Лабораторный	38			зачет	
	практикум					