

ШИФР

Задания вступительного испытания по химии 2025 10 класс биологическая специализация

1(1)	2(1)	3(1)	4(2)	5(1)	6(2)	7(2)	8(2)	9(2)	10(2)	11(2)	12(2)	13(2)	14(2)	15(2)

16(2)	17(2)	18(4)	19 (4)	20(4)	21(3)	22(5)

Таблицу заполняет проверяющий

При оценивании заданий № 4,6-15 при наличии одного неправильного ответа задание оценивается в 1 балл; при наличии больше одного неправильного ответа, задание оценивалось в 0 баллов.

Часть 1 Максимально 25 баллов

Ответом в заданиях 1–3 является последовательность цифр, под которыми указаны химические элементы в данном ряду. Запишите в поле ответа номера выбранных элементов в нужной последовательности.

1) Na	2) Ge	3) Cl	4) S	5) Mg	3	4	
имеют	электронную к	онфигураці	ию ВНЕШН	ЕГО УРОВНЯ	$3s^23p^6$.		
1. (10)	определите, ст	аоильные	ионы каки.	х из указанны	х в ряду з	nemer	110

2. (16) Из указанных в ряду химических элементов выберите три элемента, которые в Периодической системе химических элементов Д.И. Менделеева

находятся в одном периоде	. Расположите вы	бранные эле	менть	ы в пор	оядке		
уменьшения их электроотри	іцательности.					_	
1) Al 2) Cr 3) 5	Se 4) Na	5) P	5	1	4		
3.(16) Выберите два элемента, валентность которых в высшем оксиде больше, чем в водородном соединении.							
1) I 2) Al 3) Ba	4) F 5	As	1	5			
4.(26) Выберите соединения, в которых катион и анион содержат одинаковое количество электронов: 1) NaCl 2) LiH 3) NH ₄ F 4) CaF ₂ 5) SrSe Ответ: 235							
1) NaCl 2) LiH 3) NF	141 +/ Cai 2	3) 3130		O.	DCI. 2	.55	
 5.(16) Из предложенного перечня выберите вещества с высокой температурой плавления, которые содержат ковалентную полярную связь. 1) гидроксид натрия 2) кремнезем 3) алмаз 4) серная кислота 5) хлорид кальция Ответ: 12 6.(26) Среди предложенных формул веществ, расположенных в 							
пронумерованных ячейках,	выберите:						
А) сильную кислоту; Б) среднюю соль; В) несолеобразующий оксид; Г) кислотный оксид							
1. CrO ₃	2. Аммиачн	ая селитра	3.		H ₃	PO ₄	
4. Гашеная известь	5.	FeO	6.	Окси	1д азс	та (II)	
7. Плавиковая кислота	8.	HNO ₃	9.	(Ca(HC	O ₃) ₂	
10. K ₂ HPO ₄	11.	Na ₂ O ₂	12.		E	BaH₂ 	
Запишите в таблицу номер ячейки, в которой расположено вещество.							
			Α	Б	В	Γ	
			8	2	6	1	
7.(26) К одной из двух про	обирок, содержа	щих оксид ці	инка,	добав	вили	раствор	

сильного электролита X, а к другой — раствор вещества Y. В результате в каждой из пробирок оксид цинка полностью растворился, причем во второй пробирке реакция протекала согласно ионному уравнению ZnO + $2H^+ = Zn^{2+} + H_2O$.

4) HI

5) NaOH

Определите вещества X и Y, которые могут вступать в описанные реакции.

3) HNO₂

1) CaCl₂

2) HF

8.(26). Задана следующая схема превращений веществ

Х	Υ
5	4

$$Zn \longrightarrow X \longrightarrow Zn(OH)_2 \longrightarrow Zn(NO_3)_2$$

Определите, какие из указанных веществ являются веществами X и Y.

- 1) Cu(NO₃)₂
- 2) Na₂[Zn(OH)₄]
- 3)ZnO
- 4) ZnS
- 5) HNO₃

Х	Υ
2	5

9.(26) Выберите несколько правильных ответов:

Из предложенного перечня выберите все типы реакций, к которым можно отнести взаимодействие гидроксида железа (II) с пероксидом водорода:

- 1) реакция соединения
- 2) гетерогенная реакция
- 3) реакция замещения

- 4) обратимая реакция
- 5) окислительно-восстановительная реакция

Ответ: 125

Для заданий № 10-15 на установление соответствия к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой. Цифры в ответе могут повторяться.

10.(26) Установите соответствие между названием вещества и классом/группой к которому(-ой) оно относится.

ТРИВИАЛЬНЫЕ НАЗВАНИЯ

КЛАССЫ НЕОРГАНИЧЕСИКИХ СОЕДИНЕНИЙ

А) малахит

1) соль средняя

5) оксид основный

- Б) кальцинированная сода 2) основная соль

6) соль кислая

- В) питьевая сода
- 3) оксид кислотный
- 7) основание

Г) угарный газ

- 4) оксид несолеобразующий
- 8) смешанный оксид

Α	Б	В	Г
2	1	6	4

 11.(26) Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать:

ФОРМУЛА ВЕЩЕСТВА

РЕАГЕНТЫ

A) HNO₃

- 1) HNO₃, H₂SO₄, KOH
- 4) FeCl₃, Zn(NO₃)₂, HCl

Б) ZnO

- 2) KCl, NaHCO₃, Ca
- 5) Cu, Cu(OH)₂, K_2SiO_3

B) K₂SO₃

3) NO, H₂, Na

Γ) O₂

Α	Б	В	Γ
5	1	4	3

12.(26) Установите соответствие между исходными веществами и продуктами реакции:

ИСХОДНЫЕ ВЕЩЕСТВА

ПРОДУКТЫ РЕАКЦИИ

A) Fe₂O₃ и H₂SO₄ (конц.)

1) FeSO₄, Fe₂(SO₄)₃ и H₂O

4) Fe₂(SO₄)₃, SO₂ и H₂O

Б) Fe и H₂SO₄ (разб.)

2) FeSO₄ и H₂

5) FeSO₄ и H₂O

B) Fe₃O₄ и H₂SO₄ (разб.)

3) Fe₂(SO₄)₃ и H₂O

6) FeSO₄

Г) Fe и Fe₂(SO₄)₃

Α	Б	В	Γ
3	2	1	4

13.(26) Установите соответствие между формулой иона (частицы) и окислительновосстановительными свойствами, которые он способен проявлять.

ион

РОЛЬ В ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЯХ

A) S²⁻

1) является только окислителем

Б) NO₂ -

2) является только восстановителем

B) CrO₄²⁻

3) является и окислителем, и восстановителем

Γ) Cl⁻

4) не проявляет окислительно-восстановительных свойств

Α	Б	В	Γ
2	3	1	2

14.(26) Установите соответствие между формулой вещества и некоторыми продуктами электролиза **его водного раствора**:

ФОРМУЛА СОЛИ

НЕКОТОРЫЕ ПРОДУКТЫ ЭЛЕКТРОЛИЗА

А) нитрат натрия

1) металл и галоген

4) галоген и кислород

Б) хлорид лития

2) водород и кислород

5) металл и кислород

B) сульфат ртути (II)

3) водород и галоген

Г) бромид меди (II)

Α	Б	В	Γ
2	3	5	1

15.(26) Установите соответствие между реагирующими веществами и признаком реакции, который наблюдается при их взаимодействии:

РЕАГИРУЮЩИЕ ВЕЩЕСТВА

ПРИЗНАКИ РЕАКЦИИ

A) NaOH и CrCl₃ (изб.)

1) растворение осадка

Б) KOH(p-p) и Al(OH)₃

2) образование белого осадка

B) Na₂CO₃ и HNO₃

3) выделение бесцветного газа

 Γ) CaCO₃, H₂O и CO₂

4) образование окрашенного осадка

5) видимые признаки реакции отсутствуют

Α	Б	В	Γ
4	1	3	1

2 часть Максимально 25 баллов

16. (26) Закончите уравнение реакции:

$$PH_3+ KMnO_4 + H_2SO_4 \rightarrow$$

Составьте электронный баланс, укажите окислитель и восстановитель.

Решение:

1 балл за определение продуктов реакции и составление схемы электронного баланса:

Марганец в KMnO₄ проявляет максимальную степень окисления, в кислой среде он понижает свою степень окисления от +7 до +2; продукт реакции – сульфат марганца - MnSO₄. Фосфор в PH₃ проявляет степень окисления -3, следовательно, он может повысить свою степень окисления до +5, продукт реакции - фосфорная кислота. Остальные продукты: вода и сульфат калия K₂SO₄.

PH₃+ KMnO₄ + H₂SO₄
$$\rightarrow$$
 H₃PO₄ + MnSO₄ + H₂O + K₂SO₄
P⁻³- 8e \rightarrow P⁺⁵ | 5

$$P^{-3}$$
- 8e $\rightarrow P^{+5}$ | 5
Mn⁺⁷+ 5e \rightarrow Mn⁺² | 8

1 балл: записано молекулярное уравнение с коэффициентами:

 $5PH_3 + 8KMnO_4 + 12H_2SO_4 \rightarrow 5H_3PO_4 + 8MnSO_4 + 12H_2O + 4K_2SO_4$

определены окислитель и восстановитель

Окислитель - $KMnO_4$ за счет Mn^{+7} ; восстановитель - PH_3 за счет P^{-3}

Максимально 2 балла

17. (26) Выберите вещества, реакция ионного обмена между которыми не сопровождается видимыми признаками. Запишите молекулярное, полное и сокращённое ионное уравнения реакции с использованием выбранных веществ Перечень веществ: хлор, оксид серы (IV), бромоводородная кислота, перманганат калия, гидроксид железа (II), нитрит кальция. Допустимо использование воды в качестве среды для протекания реакции.

Решение:

При взаимодействии нитрита кальция и бромоводородной кислоты образуется слабый электролит - азотистая кислота:

1 балл за составление молекулярного уравнения:

$$Ca(NO_2)_2 + 2HBr \rightarrow CaBr_2 + 2HNO_2$$

0,5 балла за полное ионное уравнение

$$Ca^{2+} + 2NO_2^{1-} + 2H^{1+} + 2Br^{1-} \rightarrow Ca^{2+} + 2Br^{1-} + HNO_2$$

0,5 балла за сокращенное ионное уравнение:

$$NO_2^{1-} + H^{1+} \rightarrow HNO_2$$

Максимально 2 балла

18. (46) Приведите 4 уравнения описанных реакций:

Провели электролиз водного раствора сульфида натрия. Выделившийся на катоде газ пропустили над калием. Полученное твердое вещество растворили в воде, через образовавшийся нагретый раствор, пропустили хлор.

Решение:

- 2) $H_2 + 2K \rightarrow 2KH$
- 3) KH+ $H_2O \rightarrow$ KOH+ H_2
- 4) $6KOH + 3Cl_2 \rightarrow KClO_3 + 5KCl + 3H_2O$

Максимально 4 балла

19. (46) Крокодил Гена в свободное от работы в зоопарке время занимался выращиванием необычных цветов. Он прочитал в одной книге, что садовые незабудки можно окрасить в розовый цвет, если подкислить почву, на которой они растут. Помогите Гене осуществить свою мечту и получить розовые незабудки. Цветы при этом не должны погибнуть.... Обоснуйте свой ответ. Перечень веществ:

- 1) Карбонат калия 2) Плавиковая кислота 3) Фосфат натрия 4) Хлорид аммония
- 5) Иодид калия 6) Гидроксид натрия

Решение:

Кислую среду можно получить, внося в почву кислоту, кислотный оксид, реагирующий с водой с образованием кислоты, кислую соль или гидролизующуюся соль, образованную слабым основанием и сильной кислотой. В первых двух случаях среда будет слишком кислая — цветы погибнут. Следовательно, для выращивания розовых незабудок требуется добавить в почву соль, при гидролизе или при диссоциации кислотного остатка, которой возникает кислая среда. Из приведённых веществ данному условию отвечает только хлорид аммония:

$$NH_4CI + H_2O \longleftrightarrow NH_3 \cdot H_2O + HCI$$

 $NH_4^+ + H_2O \longleftrightarrow NH_3 \cdot H_2O + H^+$

Так как среда других растворов:

HF - среда — кислая; NaOH — щелочная. Средние соли K_2CO_3 и Na $_3PO_4$, образованны сильным основанием и слабой кислотой; среда раствора таких солей - слабощелочная; KI - соль, образована сильным основанием и сильной кислотой; среда раствора — нейтральная;

1 балл: За обоснование выбора ответа № 4

по 0, 5 балла за определение среды каждого раствора:

1) HF –среда кислая,

2) K₂CO₃ – среда щелочная

3) №3РО4 –среда щелочная

4) NH₄Cl – среда кислая

щелочная

5) KI – среда нейтральная

6) NaOH –среда

Максимально 4 балла

Для заданий 20-22 запишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления (указывайте единицы измерения и обозначения искомых физических величин).

Сокращайте до сотых

20.(46) Металл А и неметалл В при нагревании образуют соединение, гидролизующееся водой с выделением сероводорода. Простые вещества А и G реагируют с образованием амфотерного оксида трёхвалентного металла с массовым содержанием кислорода 47 %. Вещества В и G образуют растворимый в воде газ, раствор которого окрашивает лакмусовую бумажку в красный цвет. Соединение всех трёх элементов D (ω(O) = 56 %) представляет собой бесцветную, растворимую в воде соль сильной кислоты. Приведите уравнения описанных процессов. Определите формулу вещества D. Подтвердите свое решение расчетами.

Решение:

1)16 за расчет молярной массы А через массовую долю кислорода Определяем вещество А, исходя и предположения, что вещества А и G реагируют с образованием амфотерного оксида трёхвалентного металла с массовым содержанием кислорода 47 %.

$$W(O) = m(O) / A_2O_3$$

Пусть х - молярная масса вещества А, тогда если взять 1 моль оксида, то кислорода в нем содержится - 3 моль;

тогда $m(O) = \upsilon \cdot M; \ m(O) = (3*16) \ r$,

а масса оксида имеет вид: $m(A_2O_3) = (2x + 48)$ г

47% = 48/2x + 48

Преобразуя, получаем х = 27. Следовательно, вещество А - это алюминий

2) 26 за уравнения реакций:

С выделением сероводорода гидролизуются лишь сульфиды, следовательно, вещество **В - это сера**.

0,5 балла за уравнение взаимодействия вещества А и В

 $2AI + 3S \rightarrow Al_2S_3$

0,5 балла за уравнение гидролиза сульфида алюминия:

 $Al_2S_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2S$

0,5 балла за уравнение взаимодействия **A** и **G** -образования амфотерного оксида:

 $4AI + 3O_2 \rightarrow 2AI_2O_3$

0,5 балла за уравнение взаимодействия вещества В и G

 $S + O_2 \rightarrow SO_2$ в воде образуется нестойкая сернистая кислота — среда кислая, лакмус красный;

3) 1 балл - за предположение состава соли. Сера может образовать только одну сильную кислоту — H_2SO_4 , следовательно, солью является сульфат алюминия - $Al_2(SO_4)_3$

Максимально 4 баллов

21.(36) Через 513 г 15 %-ного раствора гидроксида бария пропустили сернистый газ, после чего масса раствора стала равна 570,6 г. Вычислите массовую долю вещества в полученном растворе.

Решение:

1. 1 балл за составление уравнений реакций образования средней и кислой солей:

средняя соль образуется при условии: υ (Ba(OH)₂): υ (SO₂)= 1:1

 $Ba(OH)_2 + SO_2 \rightarrow BaSO_3 + H_2O$

кислая соль образуется при условии: υ (Ba(OH)₂) : υ (SO₂)= 1:2

 $Ba(OH)_2 + 2SO_2 \rightarrow Ba(HSO_3)_2 + H_2O$

2. 0,5 балла за определение количества вещества Ba(OH)₂

0,5 балла за расчет количества вещества SO₂

Масса нового раствора $m(Ba(OH)_{2p-p}) + m(SO_2) = 570,6$; можно найти массу оксида серы (IV):

513 +
$$m(SO_2)$$
 = 570,6 Γ ; $m(SO_2)$ = 57,6 Γ .

$$\upsilon$$
 (SO₂)= m(SO₂)/ M (SO₂); υ (SO₂)= 57,6/64 = 0,9 моль,

1 балл за определение типа соли и расчета ее массовой доли в растворе:

 υ (Ba(OH)₂): υ (SO₂)= 1:2, следовательно, образовалась кислая соль Ba(HSO₃)₂

W (Ba(HSO₃)₂= m(Ba(HSO₃)₂)/m (p-p);

 υ (Ba(HSO₃)₂)= 0,45 моль; m(Ba(HSO₃)₂)= υ *M;

W (Ba(HSO₃)₂ = 0,45 *299/570,6* 100% = 134,55/570,6 *100% = 23,58%

Максимально 3 балла

22.(56) Смесь меди и алюминия общей массой 2 г обработали 40% раствором гидроксида натрия (плотность 1,43 г/мл) до прекращения выделения газа. Остаток растворили в разбавленной азотной кислоте, образовавшуюся соль выделили и прокалили. Масса остатка после прокаливания составила 0,8 г. Определите массовые доли металлов в смеси и объем израсходованного раствора щелочи.

Решение: 1. Приведены три уравнения реакции:

С щелочью прореагирует только алюминий, с образование комплексной соли:

1 балл 2Al + 2NaOH + 6H₂O = 2Na[Al(OH)₄] + 3H₂
$$\uparrow$$
 (1)

Но медь, прореагирует с разбавленной азотной кислотой с образованием оксида азота (II):

1 балл
$$3Cu + 8HNO_3 (разб) = 3Cu(NO_3)_2 + 2NO \uparrow + 4H_2O (2)$$

После прокаливания нитрат меди (II) разлагается:

1 балл
$$2Cu(NO_3)_2 = 2CuO + 4NO_2 \uparrow + O_2 \uparrow (3)$$

2) 1 балл за определение содержания металлов в сплаве

Если алюминий из сплава растворился в щелочи полностью (а в ином случае при имеющихся данных задача не имеет решения), то остаток — после выделения осадка из раствора и его прокаливания — представляет собой оксид меди (II). Найдем его количество в моль (u):

υ (CuO) = m(CuO)/ M(CuO) = 0,8/80 = 0,01 моль, то это означает, что и меди в сплаве было такое же количество:

 $\upsilon(\text{CuO}) = \upsilon(\text{Cu(NO}_3)_2 \,_{\text{уравнение}\,3} = \upsilon(\text{Cu(NO}_3)_2 \,_{\text{уравнение}\,2}\upsilon(\text{Cu}) \,_{\text{уравнение}\,2} = 0,01 \,_{\text{можь, и}}$ можно найти массу меди в сплаве:

$$m(Cu) = n(Cu)*M(Cu) = 0.01*64 = 0.64 r.$$

Тогда масса алюминия в сплаве: m(AI) = m(cплава) - m(Cu) = 2 - 0,64 = 1,36 г., Определяем содержание металлов в сплаве:

$$W(Cu) = 0.64/2 = 0.32$$
 или **32,0%**; $W(Al) = 1.36/2 = 0.68$ или **68,0%**.

3) 1 балл за расчет объема раствора щелочи

Из уравнения (1) следует, что количество израсходованного в реакции NaOH равно количеству растворенного алюминия:

$$\upsilon(AI) = m(AI)/M(AI);$$
 $\upsilon(AI) = 1,36/27 = 0,05$ моль= $\upsilon(NaOH) = n(AI) = 0,05$ моль.

Тогда масса щелочи:

$$m(NaOH) = n(NaOH) * M(NaOH) = 0.05 * 40 = 2.0 r.$$

Использя формулу для вычисления массовой доли вещества в растворе

 $W(NaOH) = m(NaOH)/m(NaOH_{p-p}) *100%$, найдем массу раствора щелочи:

$$m(NaOH_{p-p}) = 2/0,4=5r$$

Используя формулу расчета плотности раствора $\rho = m_{p-pa}/V_{p-pa}$, находим

$$V = m(p-pa NaOH) / \rho$$
; $V (p-pa NaOH) = 5 / 1,43 = 3,5 мл.$

Максимально 5 баллов