Разбор заданий вступительной работы по химии в 10 биологический класс. 2024 уч/год.

1(2	5) 2(26)	3(26)	4(26)	5(26)	6(26)	7(46)	8(36)	9(36)	10(36)	11(36)	12(36)	13(66)	14(66)	15(76)

Часть 1.

Для выполнения заданий 1–3 используйте следующий ряд химических элементов. Ответом в заданиях 1–3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

1) Li 2) F 3) N 4) P 5) Cl

1(2б). Определите, атомы каких из указанных элементов имеют в основном состоянии четыре s-электрона. Запишите в поле ответа номера выбранных элементов.

2 3

2(26). Из указанных в ряду химических элементов выберите три элемента, которые в Периодической системе химических элементов Д.И.Менделеева находятся в одном периоде. Расположите выбранные элементы в порядке возрастания их металлических свойств. Запишите в поле ответа номера выбранных элементов в нужной последовательности.

2 3 1

3(2б). Из числа указанных в ряду элементов выберите два элемента, которые проявляют высшую степень окисления, равную +5. Запишите в поле ответа номера выбранных элементов.

3 4

4(2б). Установите соответствие между формулой вещества и классом/группой, к которому(-ой) это вещество принадлежит: к каждой позиции, обозначенной буквой, подберите соответствующую позицию из второго столбца, обозначенную цифрой.

Формула вешества

A) KHCO₃

Б) Mn₂O₇

B) $Na_2[Zn(OH)_4]$

Класс/группа

- 1) основная соль
- 2) кислотный оксид
- 3) средняя соль
- 4) основный оксил
- 5) комплексная соль
- 6) кислая соль

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A	Б	В
6	2	5

5(26). В пробирку с нерастворимым веществом X добавили несколько капель раствора вещества Y. В результате реакции наблюдали образование газа. Из предложенного перечня выберите вещества X и Y, которые могут вступать в описанную реакцию.

1) K₂SO₄

2) BaSiO₃

3) $Cu(NO_3)_2$

4) HNO₃

5) MgSO₃

X Y 5 4

6(2б). В схеме превращений

X Y

 $Fe \rightarrow FeCl_2 \rightarrow Fe(NO_3)_2$ веществами X и Y являются соответственно

1) Cl₂

2) MgCl₂

3) CuCl₂

4) HNO₃

5) Pb(NO₃)₂

X Y 3 5

7(4б). Установите соответствие между формулой вещества и формулами реагентов, с каждым из которых оно может взаимодействовать.

формула вещества

Γ) CuO

A) FeBr₂ Б) HNO₃ В) Al(OH)₃ реагенты

1) Zn, NaCl, CO₂

2) AgNO₃, Cl₂, KOH

3) HCl, H₂SO₄, KOH

4) Cu, NaOH, MgO

5) H₂SO₄, H₂, CO

A	Б	В	Γ
2	4	3	5

8(3б). Установите соответствие между двумя веществами и реактивом, с помощью которого можно различить эти вещества: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

вещества

реактив

A. NH₃ и NH₄NO₃

 $1. K_2CO_3$

Б. Ва(ОН)2 и NаОН

- 2. фенолфталеин
- B. Zn(NO₃)₂ и MgSO₄
- 3. Ba(CH₃COO)₂

4. Cu

A	Б	В
2	1	3

9(36). Установите соответствие между названием соли и отношением этой соли к гидролизу: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

вещества

A) K₂SO₄

1. не подвергается гидролизу

Б) Al₂S₃

- 2. гидролиз по катиону
- В) СаСО₃ 3. гидролиз по аниону

A	Б	В
1	4	1

4. гидролиз идет и по катиону и по аниону

10(3б). Установите соответствие между формулой соли и продуктами электролиза водного раствора этой соли, которые выделились на инертных электродах: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

вещество

- A) CuBr₂
- Б) NaF
- B) K_2S

A	Б	В
4	1	5

продукты электролиза

- 1) водород, кислород
- 2) металл, кислород
- 3) водород, галоген
- 4) металл, галоген
- 5) водород, сера
- 6) металл, сера

Часть2.

Для выполнения заданий **11 и 12** используйте следующий перечень веществ: дихромат калия, сульфит натрия, сероводород, нитрат бария, аммиак, серная кислота. Допустимо использование водных растворов веществ.

11(3б). Из предложенного перечня веществ выберите вещества, между которыми окислительно-восстановительная реакция протекает с выделением газа с резким запахом. В ответе запишите уравнение только одной из возможных окислительно-восстановительных реакций с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.

$$H_2S + 3H_2SO_4 \rightarrow 4SO_2 + 4H_2O$$
 16
$$S^{-2} - 6e^- \rightarrow S^{+4} \qquad 1$$

$$S^{+6} + 2e^- \rightarrow S^{+4} \qquad 3$$
 16
$$S^{-2}(\mathsf{B}\; H_2S) - \mathsf{восстановитель}, \, S^{+6}(\mathsf{B}\; H_2SO_4) - \mathsf{окислитель}$$
 16

12(3б). Из предложенного перечня веществ выберите вещества, между которыми протекает реакция ионного обмена с образованием осадка, растворимого в минеральных кислотах. Составьте уравнения реакций в молекулярном виде, полное и сокращенное ионные уравнения реакций.

$$\begin{array}{l} Na_{2}SO_{3} + Ba(NO_{3})_{2} \rightarrow BaSO_{3} \downarrow + 2NaNO_{3} \\ 2Na^{+} + SO_{3}^{2-} + Ba^{2+} + 2NO_{3}^{-} \rightarrow BaSO_{3} \downarrow + 2Na^{+} + 2NO_{3}^{-} \\ Ba^{2+} + SO_{3}^{2-} \rightarrow BaSO_{3} \downarrow \end{array}$$

13(6б). Твердое вещество, образовавшееся при взаимодействии сернистого газа и сероводорода, при нагревании взаимодействует с алюминием. Продукт реакции растворили в соляной кислоте и в образовавшийся раствор добавили поташ. Полученный в ходе химической реакции раствор подвергли электролизу, а выделившийся газ собрали и пропустили в раствор известковой воды. При этом наблюдали выпадение осадка. Напишите уравнения описанных реакций.

$SO_2 + 2H_2S \rightarrow 3S + 2H_2O$	16
$2Al + 3S \rightarrow Al_2S_3$	1б
$Al_2S_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2S\uparrow$	1б
$2AlCl_3 + 3K_2CO_3 + 3H_2O \rightarrow 2Al(OH)_3\downarrow + 3CO_2\uparrow + 6KCl$	1б
$2KCl + 2H_2O \rightarrow 2KOH + H_2\uparrow + Cl_2\uparrow$	1б
$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$	16

14(6б). Сульфит калия получили пропусканием оксида серы(IV) в 20%-ный раствор гидроксида калия (плотность 1,3г/мл). Полученная соль полностью прореагировала (в присутствии серной кислоты) с 4,85г соли, в состав которой входит 26,53% калия, 35,37% хрома и кислород. Рассчитайте объём раствора щелочи, израсходованного на получение сульфита калия.

$$SO_2 + 2KOH \rightarrow K_2SO_3 + H_2O$$
 (1)

$$v_K: v_{Cr}: v_O =$$
 : = 0,68:0,68:2,38125 = 1:1:3,5

Следовательно, формула вещества - К2Сг2О7

2б

$$3K_2SO_3 + K_2Cr_2O_7 + 4H_2SO_4 \rightarrow Cr_2(SO_4)_3 + 4K_2SO_4 + 4H_2O$$
 (2)

 $\upsilon_{\text{ K2Cr2O7}} = m: M = 4,85: 294 = 0,0165$ моль

по уравнению (2): $\nu K_2SO_3 : \nu K_2Cr_2O_7 = 3 : 1$, следовательно $\nu K_2SO_3 = 0.05$ моль; переходим к уравнению (1): $\nu K_2SO_3 : \nu KOH = 1 : 2$, следовательно $\nu KOH = 0.1$ моль;

Рассчитываем для КОН: $m_{(B-Ba)} \to m_{(p-pa)} \to V_{(p-pa)}$

$$V_{(p-pa)} = 21,54$$
мл

15(7б). Навеску алюминия массой 8,1г растворили в 200г 14%-го раствора гидроксида калия. В полученный раствор по каплям добавляли 10%-ный раствор соляной кислоты до полного перевода всех ионов алюминия в осадок. Рассчитайте массовую долю соли в растворе, полученном после отделения осадка.

$$2A1 + 2KOH + 6H2O \rightarrow 2K[Al(OH)4] + 3H2$$
 (1)

 $v_{Al} = m/M = 8,1/27 = 0,3$ моль

 $v_{\text{KOH}} = w \cdot m_{\text{p-pa}} / M = 0.14 \cdot 200 / 56 = 0.5$ моль

Т.к. v_{Al} : $v_{KOH} = 2:2$, следовательно **КОН** дан в избытке.

υкон оставшегося в избытке равно 0,2моль.

$$T.к. \ \upsilon_{Al}: \upsilon_{K[Al(OH)4]}: \upsilon_{H2}=2:2:3,$$
 следовательно $\upsilon_{K[Al(OH)4]}=0,3$ моль, $\upsilon_{H2}=0,45$ моль

$$KOH + HCl \rightarrow KCl + H_2O \tag{2}$$

$$K[Al(OH)_4] + HCl \rightarrow KCl + Al(OH)_3 + H_2O$$
 (3)

Т.к. υ_{HCl} : υ_{KOH} : υ_{KCl} = 1 : 1 : 1 по уравнению реакции (2), следовательно их количества вещества равны 0,2 моль.

Т.к. υ_{HCl} : $\upsilon_{K[Al(OH)4]}$: υ_{KCl} : $\upsilon_{Al(OH)3} = 1:1:1:1$ по уравнению реакции (3), следовательно их количества вещества равны 0,3 моль.

$$m_{KCl} = \upsilon \cdot M = 0.5 \cdot 74.5 =$$
37.25 Γ , $m_{Al(OH)3} = \upsilon \cdot M = 0.3 \cdot 78 =$ **23.4** Γ $m_{HCl(p-p)} = \upsilon \cdot M : w = 0.5 \cdot 36.5 : 0.1 =$ **182.5** Γ

$$m_{p-pa} = m_{Al} + m_{KOH(p-pa)} - m_{H2} + m_{HCl(p-pa)} - m_{Al(OH)3} = 8,1 + 200 - 0,9 + 182,5 - 23,4 = 366,3$$

$$w_{KCl} = m_{\text{B-Ba}} / m_{\text{p-pa}} 37,25 / 366,3 = 0,1017$$
 или **10,17%**