
Вступительное испытание по информатике для поступающих в 11 МИФ класс

Задание 1 (4 балла)

На рисунке схема дорог изображена в виде графа, в таблице звездочкой отмечено наличие дороги между двумя населёнными пунктами.

Так как таблицу и схему рисовали независимо друг от друга, нумерация пунктов в таблице никак не связана с буквенными обозначениями на графе. Кроме того, при заполнении таблицы одну дорогу случайно пропустили.

Определите два населённых пункта, дорога между которыми есть на графе, но не отмечена в таблице. В ответе запишите буквенные обозначения этих пунктов в алфавитном порядке

Ответ: БВ

Задание 2 (4 балла)

Логическая функция F задаётся выражением: $((x \to y) \equiv (z \land w)) \land (x \to z)$

Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F. Определите, какому столбцу таблицы истинности соответствует каждая из переменных w, x, y, z.

Переменная 1	Переменная 2	Переменная 3	Переменная 4	Функция
???	???	???	???	$\boldsymbol{\mathit{F}}$
0		0		1
			0	1
0			0	1

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала буква, соответствующая первому столбцу; затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Ответ: YZWX

Переменная 1	Переменная 2	Переменная 3	Переменная 4	Функция	
y ???	Z ???	w ???	X ???	F	
0	1	0	1	1	
1	1	1	0	1	
0	1	1	0	1	

Задание 3 (3 балла)

Все заглавные буквы русского алфавита закодированы неравномерным двоичным кодом, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова некоторых букв: A-000, B-0010, B-10, T-1101. Известно также, что код слова РОБОТ содержит 17 двоичных знаков. Укажите самый короткий возможный код буквы Р. Если таких кодов несколько, укажите тот из них, который имеет **наименьшее** числовое значение.

Ответ: 010

Задание 4 (2 балла)

Алгоритм получает на вход натуральное число $N \ge 10$ и строит по нему новое число R следующим образом:

- 1. Все пары соседних цифр в десятичной записи N рассматриваются как двузначные числа (возможно, с ведущим нулём).
- 2. Из списка полученных на предыдущем шаге двузначных чисел выделяются наименьшее и наибольшее.
- 3. Результатом работы алгоритма становится сумма найденных на предыдущем шаге двух чисел.

Пример. Дано число N = 2022. Алгоритм работает следующим образом:

- 1. В десятичной записи выделяем двузначные числа: 20, 02, 22.
- 2. Наименьшее из найденных чисел 02, наибольшее 22.
- 3.02 + 22 = 24.

Результат работы алгоритма R = 24.

При каком наименьшем N в результате работы алгоритма получится R = 145?

Ответ: 496

```
for n in range(10, 10000):

a = []
b = str(n)
for i in range(len(b)- 1):
a.append(int(b[i: i + 2]))
if min(a) + max(a) == 145:
print(n)
break
```

Задание 5 (2 балла)

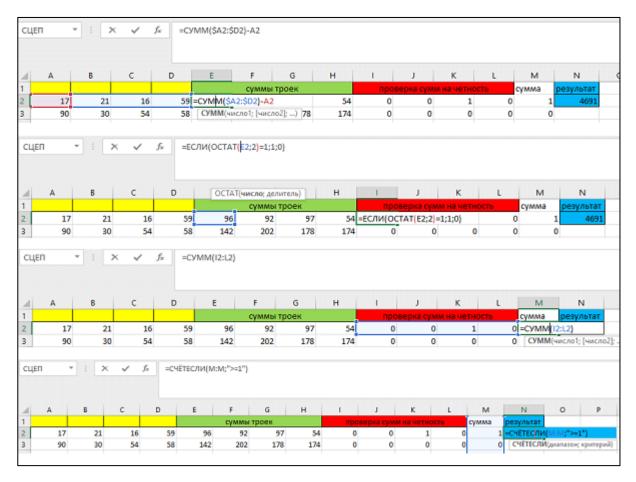
В информационной системе хранятся сведения о некотором объекте и его фотография, сделанная в режиме HighColor (2^{16} цветов). Суммарно (сведения и фотография) информация об объекте занимает 7 Мбайт. Фотографию объекта заменили на более качественную, сделанную в режиме TrueColor (2^{24} цветов), при этом разрешение и коэффициент сжатия изображения не изменились. После замены информация об объекте стала занимать 9 Мбайт.

Сколько Мбайтов занимают сведения об объекте без учёта фотографии?

I1= X * Y * i1	Информационный объем фотографии до преобразования									
I2= X * Y * i2	Инфор	омационный объем фотографии после преобразования								
12 - I1 = X * Y * (i2 - i1) = 2 * 2 ^ 23	Разно	 сть инфо	рмацио	нных об	_ Бъемов ф	отограс	рии посл	⊥ ле и до п	іреобраз	вования
(X * Y) * 8 = 2 * 2 ^ 23										
X * Y = 2 * 2 ^ 23 / 2 ^ 3 = 2 * 2 ^ 20	Разрешение фотографии									
I1 = 2 ^ 20 * 16 = 4 * 2 ^ 23 = 4 Mδ	Информационный объем фотографии									
7 M6 - 4 M6 = 3 M6	Информационный объем о некотором объекте									

Задание 6 (3 балла)

Настя составляет коды из букв слова НАСТЯ. Код должен состоять из 7 букв, буква H должна встречаться в нём ровно два раза, буква A – как минимум один раз. Сколько различных кодов может составить Hастя?


Ответ: 16401

Задание 7 (3 балла)

В каждой строке электронной таблицы записаны четыре натуральных числа. Определите, сколько в таблице таких четвёрок, из которых можно выбрать три числа с нечётной суммой.

Необходимо файл с решением загрузить в систему

Ответ: 4691

Задание 8 (3 балла)

Система мониторинга формирует и отправляет специальные сообщения, в которые могут входить только следующие символы: латинские буквы (26 заглавных и 26 строчных), цифры от 0 до 9, пробел. Количество символов в сообщении может быть любым.

При передаче сообщения используется равномерное посимвольное кодирование: каждый символ кодируется одинаковым минимально возможным числом битов. Сообщение в целом кодируется минимально возможным целым числом байтов. Кроме того, к каждому сообщению добавляется заголовок, содержащий целое число байтов, одинаковое для всех сообщений.

Система отправила 7 сообщений: два сообщения по 30 символов каждое, два сообщения по 50 символов и три сообщения по 70 символов. При этом всего было передано 400 байт.

Сколько байтов содержит заголовок сообщения? В ответе запишите только целое число – количество байтов.

Задание 9 (3 балла)

Исполнитель Редактор получает на вход строку цифр и преобразует её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

A) заменить (v, w).

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку. Б) **нашлось (v).**

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

```
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
Дана программа для редактора:
НАЧАЛО
ПОКА НЕ нашлось (00)
заменить (021, 102)
заменить (022, 301)
заменить (02, 20)
заменить (01, 10)
КОНЕЦ ПОКА
КОНЕЦ
```

Известно, что исходная строка начиналась с нуля и заканчивалась нулём, а между ними содержала только единицы и двойки. После выполнения данной программы получилась строка, содержащая 27 единиц, 9 двоек и 4 тройки. Сколько двоек было в исходной строке?

Ответ: 17

```
for x in range(100):
    for y in range(100):
        s = '0' + '1' * x + '2' * y + '0'
        while s.find('00') < 0:
        s = s.replace('021', '102')
        s = s.replace('022', '301')
        s = s.replace('02', '20')
        s = s.replace('01', '10')
        if s.count('1') == 27 and s.count('2') == 9 and s.count('3') == 4:
            print(y)
            break
```

Задание 10 (3 балла)

Значение выражения $7 \cdot 729^6 + 6 \cdot 81^9 + 3^{14} - 90$ записали в системе счисления с основанием 9 без незначащих нулей. Сколько **чётных цифр** встречается в этой записи?

Задание 11 (2 балла)

На числовой прямой даны два отрезка: P = [6; 45] и Q = [18; 52]. Укажите **наименьшую** возможную длину такого отрезка A, для которого формула

$$((x \in Q) \equiv (x \in P)) \lor (((x \in P) \land \neg (x \in Q)) \rightarrow (x \in A))$$

тождественно истинна (т. е. принимает значение 1 при любом значении переменной х).

Ответ: 12

Задание 12 (3 балла)

Файл содержит последовательность неотрицательных целых чисел, не превышающих 10000. Назовём парой два идущих подряд элемента последовательности. Определите количество пар, в которых ровно один из двух элементов делится на 3, а модуль их разности меньше наименьшего нечётного элемента последовательности. В ответе запишите через пробел два числа: сначала количество найденных пар, а затем — максимальный модуль разности элементов таких пар.

Необходимо файл с решением загрузить в систему

Ответ: 748 826

```
 f = \text{open}('12.\text{txt'}) \\ a = \text{list}(\text{map}(\text{int, f.readlines}())) \\ m = \min([i \text{ for } i \text{ in a if } i \% \ 2 \ != 0]) \\ k = 0 \\ ma = -1000000000 \\ \text{for } i \text{ in range}(\text{len}(a) - 1): \\ if (a[i] \% \ 3 == 0 \text{ and } a[i+1] \% \ 3 \ != 0 \text{ or } a[i] \% \ 3 \ != 0 \text{ and } a[i+1] \% \ 3 == 0) \text{ and abs}(a[i] - a[i+1]) < m: \\ k += 1 \\ ma = \max(\text{ma, abs}(a[i] - a[i+1])) \\ \text{print}(k, ma)
```

Задание 13 (3 балла)

Исполнитель преобразует число на экране.

У исполнителя есть две команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Умножить на 2

Первая команда увеличивает число на экране на 1, вторая умножает его на 2.

Программа для исполнителя – это последовательность команд.

Сколько существует программ, которые преобразуют исходное число 1 в число 11 и при этом содержат не более двух команд умножения?

```
\begin{aligned} &\text{def } f(x,n): \\ &\text{if } n < 0: \\ &\text{return } 0 \\ &\text{if } x == 11: \\ &\text{return } 1 \\ &\text{if } x > 11: \\ &\text{return } 0 \\ &\text{a} = f(x+1,n) \\ &\text{b} = f(x*2,n-1) \\ &\text{return } a+b \\ &\text{print}(f(1,2)) \end{aligned}
```

Задание 14 (3 балла)

Текстовый файл содержит только заглавные буквы латинского алфавита (ABC...Z). Определите количество групп из идущих подряд не менее 12 символов, которые начинаются и заканчиваются буквой A, не содержат других букв A (кроме первой и последней) и содержат не меньше двух букв B.

Необходимо файл с решением загрузить в систему

Ответ: 10492

```
f = open('14.txt')
a = f.readline()
a = a[a.find('A'): a.rfind('A')]
a = a.split('A')
k = 0
for i in a:
    if len(i) >= 10 and i.count('B') >= 2:
        k += 1
print(k)
```

Задание 15 (3 балла)

Пусть $M(k) = 7\ 000\ 000 + k$, где k – натуральное число.

Найдите пять наименьших значений k, при которых M(k) нельзя представить в виде произведения **трёх различных** натуральных чисел, не равных 1.

В ответе запишите найденные значения к в порядке возрастания через пробел.

Необходимо файл с решением загрузить в систему

Ответ: 1 3 9 13 21

```
n = 0
for k in range(1, 50):
   a = 7000000 + k
   d = 2
  b = set()
   c = [0] * 100000000
   while a > 1:
     while a \% d == 0:
        b.add(d)
        a //= d
        c[d] += 1
      d += 1
  b = list(b)
   if (len(b) == 1 \text{ and } c[b[0]] < 6) or (len(b) == 2 \text{ and } c[b[0]] <= 2 \text{ and } c[b[1]] <= 2):
     print(k)
     n += 1
   if n == 5:
     break
```

Задание 16 (3 балла)

Дана последовательность натуральных чисел. Рассматриваются все её непрерывные подпоследовательности, состоящие более чем из ста элементов.

Необходимо определить количество таких подпоследовательностей, сумма элементов которых кратна 999.

Входные данные

Первая строка входного файла содержит целое число N — общее количество чисел в наборе. Каждая из следующих N строк содержит одно число.

Гарантируется, что число в ответе не превышает $2 \cdot 10^9$.

Вам даны два входных файла (файл A и файл B), каждый из которых имеет описанную выше структуру. В ответе укажите два числа: сначала значение искомой суммы для файла A, затем – для файла B.

Необходимо файл с решением загрузить в систему

Ответ: файл А – 317, файл В – 1801612662

```
f = open('16-A.txt')
n = int(f.readline())
a = list(map(int, f.readlines()))
k = 0
for i in range(n - 100):
s = a[i]
for j in range(i + 1, n):
s += a[j]
if s % 999 == 0 and (j - i + 1) > 100:
k += 1
print(k)
```

```
f = open('16-B.txt')
n = int(f.readline())
k = [0] * 999
count = 0
buf = []
ps = 0
buf.append(0)
for i in range(1, 100 + 1):
  t = int(f.readline())
  ps += t
  buf.append(ps)
for i in range(101, n + 1):
  k[buf[0] % 999] += 1
  t = int(f.readline())
  ps += t
  count += k[ps \% 999]
  buf.pop(0)
  buf.append(ps)
print(count)
```

Задание 17 (3 балла)

При проведении эксперимента заряженные частицы попадают на чувствительный экран, представляющий из себя матрицу размером 10 000 на 10 000 точек. При попадании каждой частицы на экран в протоколе фиксируются координаты попадания: номер ряда (целое число от 1 до 10 000) и номер позиции в ряду (целое число от 1 до 10 000).

Точка экрана, в которую попала хотя бы одна частица, считается светлой, точка, в которую ни одна частица не попала, – тёмной.

Вам необходимо по заданному протоколу определить номер ряда с наибольшим количеством светлых точек в чётных позициях. Если таких рядов несколько, укажите минимально возможный номер.

Входные данные

Первая строка **входного файла** содержит целое число N – общее количество частиц, попавших на экран. Каждая из следующих N строк содержит 2 целых числа: номер ряда и номер позиции в ряду.

В ответе запишите два целых числа: сначала наибольшее количество светлых точек в чётных позициях одного ряда, затем – номер ряда, в котором это количество встречается.

Необходимо файл с решением загрузить в систему

Ответ: 17 283

```
f = open('17.txt')

n = int(f.readline())

a = f.readlines()

a = list(set(a))

b = [0] * (len(a)+1)

for i in a:

c, d = map(int, i.split())

if d % 2 == 0:

b[c] += 1

print(max(b), b.index(max(b)))
```

Вступительное испытание по информатике для поступающих в 11 МИФ класс СУНЦ УрФУ

Задание	Балл	Критерии
1	4	За правильный ответ
2	4	За правильный ответ
3	3	За правильный ответ
4	2	За правильный ответ
5	2	За правильный ответ
6	3	За правильный ответ
7	3	За правильный ответ. Без обоснования — 0 баллов
8	3	За правильный ответ
9	3	За правильный ответ
10	3	За правильный ответ
11	2	За правильный ответ
12	3	За правильный ответ. Без обоснования – 0 баллов
13	3	За правильный ответ
14	3	За правильный ответ. Без обоснования – 0 баллов
15	3	2 балла за три правильных ответа, 3 балла за 5 правильных ответов. За лишние ответы -0,5 балла за каждый. Без обоснования — 0 баллов
16	3	По 1,5 балла за варианты А и В. Без обоснования – 0 баллов
17	3	По 1,5 балла за каждый правильный ответ на каждый вопрос. Без обоснования – 0 баллов