В	С	Сумма	Балл	Подпись

Вступительный тест по математике для поступающих в 9 естественнонаучный класс СУНЦ УрФУ май 2014 года Вариант 1

Часть В

К каждому заданию приведите только ответ.

В1. Решите неравенство:
$$\frac{x+1}{x^2} > 0$$
.

Otbet:
$$(-1; 0) \cup (0; +\infty)$$
.

Решение. Выражение x^2 — всегда неотрицательно и , так как стоит в знаменателе, отлично от нуля. Значит, $\frac{x+1}{x^2}>0 \iff x+1>0$ и $x\neq 0$.

 ${f B2.}$ Шариковая ручка стоит 15 рублей. Какое количество таких ручек можно купить на 400 рублей после повышения цены на 20%.

Ответ: 22.

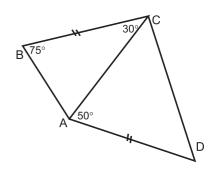
Решение. Стоимость ручки после повышения равна $15+15\cdot 0, 2=18$ рублей. Заметим, что $400=22\cdot 18+4$.

В3. Найдите последнюю цифру числа 3^{2014} .

Ответ: 9.

Решение.
$$3^{2014} = 9^{1007} = 81^{503} \cdot 9$$
.

B4. Упростите: $\sqrt{13 - 4\sqrt{3}}$.


Ответ:
$$2\sqrt{3} - 1$$
.

Решение.
$$\sqrt{13-4\sqrt{3}}=\sqrt{1-2\cdot2\sqrt{3}+12}=\sqrt{(1-2\sqrt{3})^2}==|1-2\sqrt{3}|=2\sqrt{3}-1$$
.

В5. Найдите $\angle ADC$, если BC = AD, $\angle CBA = 75^{\circ}$, $\angle BCA = 30^{\circ}$, $\angle CAD = 50^{\circ}$, (см. рисунок).

Ответ: 65°

Решение. $\angle BAC = 180^{\circ} - 75^{\circ} - 30^{\circ} = 75^{\circ}$. Получили, что BC = AC = AD. Тогда $\triangle ACD$ — равнобедренный и $\angle ACD = \angle ADC = (180^{\circ} - 50^{\circ})/2 = 65^{\circ}$.

В6. Известно, что x_1 и x_2 — корни уравнения $x^2 + 5x + 3 = 0$. Найдите $\frac{1}{x_1} + \frac{1}{x_2}$.

Otbet:
$$-\frac{5}{3}$$
.

Решение. По теореме Виета $x_1 + x_2 = -5$ и $x_1 \cdot x_2 = 3$.

$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 \cdot x_2} = -\frac{5}{3}.$$

B7. В параллелограмме ABCD известно, что AB=3 и BC=6. Точка K является пересечением биссектрисы угла ABC с прямой AD. Найдите длину отрезка BK, если известно, что BK пересекает диагональ AC в точке O и BO=2.

Ответ: 3.

Решение. Прямые BC и AD параллельны, BK — секущая, тогда $\angle CBK = \angle BKA$. По условию, BK — биссектриса, значит $\angle CBK = \angle ABK$. Получаем, что $\triangle ABK$ — равнобедренный и AB = AK = 3. Треугольники AOK и BOC подобны и OK: BO = AK: BC = 1: 2. Тогда OK = 1, BK = OK + OB = 3.

B8. Сколько точек пересечения у графиков функций $y = \left| x^2 - 6x + 5 \right|$ и y = 3?

Ответ: 4.

Решение. $\left|x^2-6x+5\right|=3$. Значит $x^2-6x+5=3$ или $x^2-6x+5=3$. Каждое из уравнеий имеет по два корня, значит у графиков функций всего 4 точки пересечения.

В9. В треугольнике ABC сторона AB=6 , $\angle ABC=120^\circ$. Найдите длину высоты, проведенной к стороне BC .

Other: $3\sqrt{3}$.

Решение. Пусть AH — искомая высота. Так как треугольник ABC тупоугольный, то AH — вне треугольника. Тогда $\triangle AHB$ прямоугольный с углом 60° . Окончательно $AH = AB \cdot \sin 60^{\circ} = 3\sqrt{3}$.

Часть С

К заданиям нужно не только привести ответ, но и полностью оформить решение.

C1. Решите уравнение
$$\frac{3}{x+2} - \frac{2x-1}{x+1} = \frac{2x+1}{x^2+3x+2}$$
.

Ответ: x = 1.

Решение. Знаменатели дробей не могут обращаться в ноль, поэтому $x \neq -1$, $x \neq -2$.

Домножив уравнение на общий знаменатель всех дробей (x+1)(x+2) и приведя подобные, получим $2x^2+2x-4=0$. Корни этого уравнения x=1 и x=-2, но второй корень посторонний (знаменатель обращается в ноль).

 ${\bf C2.}$ В числе $\overline{42X4Y}$ найдите цифры X и Y, если известно, что это число делится на 72.

Ответ: X = 8, Y = 0 или X = 0 и Y = 8.

Решение. Число делится на 72, следовательно делится на 9 и на 8. Тогда число $\overline{X4Y}$ делится на 8, значит и на 4. Это воможно при Y=0, Y=4, Y=8. Сумма всех цифр 10+X+Y делится на 9.

Получаем:

если Y = 0, то X = 8;

если Y = 8, то X = 0;

если Y = 4, то X = 4.

Последняя пара не подходит, так как число $\overline{X4Y} = 444$ не делится на 8.

C3. Окружность, вписанная в ромб ABCD, касается сторон AB и BC в точках M и P соответственно, причем MP=BP. Найдите периметр ромба, если радиус окружности равен $\sqrt{3}$.

Ответ: 16.

Решение. Так как отрезки касательных, проведенных из одной точки к одной окружности равны, то BM=BP. Учитывая условие MP=BP, получаем, что треугольник BMP равносторонний, то есть острый угол ромба равен 60° .

Высота AH ромба, проведенная из вершины A к стороне BC равна двум радиусам вписанной окружности. Из прямоугольного треугольника BAH находим: $AB = AH/\cos 60^\circ = 4$.

Периметр ромба равен 4AB = 16.

C4. Найдите все значения параметра a, при которых уравнение $ax^2 + 8x + 4a = 0$ имеет единственное решение.

Ответ: -2; 0; 2.

Решение. При a=0 уравнение обращается в линейное, решение которого x=0.

При $a \neq 0$ уравнение является квадратным и имеет одно решение, если дискриминант равен нулю. $D=64-16a^2=0\,,\;a^2=4,a=\pm 2.$

В	С	Сумма	Балл	Подпись

Вступительный тест по математике для поступающих в 9 естественнонаучный класс СУНЦ УрФУ май 2014 года Вариант 2

Часть В

К каждому заданию приведите только ответ.

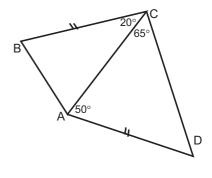
В1. Решите неравенство:
$$\frac{x-2}{x^2} < 0$$
.

Ответ:
$$(-\infty; 0) \cup (0; 2)$$
.

B2. Стирательная резинка стоит 16 рублей. Какое количество таких стирательных резинок можно купить на 250 рублей после понижения цены на 25%.

В3. Найдите последнюю цифру числа 2^{2014} .

B4. Упростите:
$$\sqrt{12 - 2\sqrt{11}}$$
.


Ответ:
$$\sqrt{11} - 1$$
.

В5. Найдите
$$\angle BAC$$
, если $BC = AD$, $\angle DCA = 65^{\circ}$, $\angle BCA = 20^{\circ}$, $\angle CAD = 50^{\circ}$, (см. рисунок).

Otbet: 80° .

В6. Известно, что
$$x_1$$
 и x_2 — корни уравнения $x^2-7x+6=0$. Найдите $\frac{1}{x_1}+\frac{1}{x_2}$.

Otbet:
$$\frac{7}{6}$$
.

B7. В параллелограмме ABCD известны длины сторон: AB=5 и BC=10. Точка K является пересечением биссектрисы угла ABC с прямой AD. Найдите длину отрезка BO, если известно, что O — точка пересечения BK с диагональю AC и BK=6.

Ответ: 4.

B8. Сколько точек пересечения у графиков функций $y = \left| x^2 - 4x + 3 \right|$ и y = 5?

Ответ: 2.

В9. В треугольнике ABC сторона AB=4 , $\angle ABC=135^\circ$. Найдите длину высоты, проведенной к стороне BC .

Otbet: $2\sqrt{2}$.

Часть С

K заданиям нужно не только привести ответ, но и полностью оформить решение.

С1. Решите уравнение
$$\frac{3}{x-1} - \frac{2x-7}{x-2} = \frac{2x-5}{x^2-3x+2}$$
. Ответ: $x=4$.

 ${\bf C2.}$ В числе $\overline{64X5Y}$ найдите цифры X и Y, если известно, что это число делится на 36.

Ответ: X = 1, Y = 2 или X = 6 и Y = 6.

C3. Окружность с центром O, вписанная в ромб KLMN, касается сторон KL и KN в точках X и Y соответственно, причем $\angle XOY=135^\circ$. Найдите радиус окружности, если периметр ромба равен $8\sqrt{2}$.

Ответ: 1.

C4. Найдите все значения параметра a, при которых уравнение $ax^2 + 12x + 4a = 0$ имеет единственное решение. Ответ: -3: 0: 3.