
9 класс

1. Экспериментатор Кирилл и вечное равновесие (10 баллов)

Экспериментатор Кирилл уравновесил на невесомом стержне кусок льда и цилиндр, причем цилиндр уже оказался немного погруженным в талую воду В сантиметре дна аквариума. Кирилл заметил, что в процессе таяния льда (и даже тогда, когда лёд полностью растает) горизонтальность стержня И вертикальность цилиндра не нарушается. Обрадовавшись факту, этому Кирилл записывать начал

X, см t, мин
2 0
4 1
6 5

\mathcal{F},\mathcal{H}	t, мин
1,20	0
0,72	1
0,24	5

зависимость координаты х уровня воды от времени (таблица 1), а также зависимость от времени натяжения нити F удерживающей цилиндр (таблица 2).

номер	вопрос	ответ	Балл
	Определите среднюю скорость подъема уровня	0,33	1
1.1	воды за первую минуту. Ответ укажите в мм/с		
	округляя ответ до сотых. Единицы измерения в		
	ответе указывать не надо!		
1.2	Определите среднюю скорость подъема уровня	0,13	1
	воды за всё время наблюдений. Ответ укажите		
	в мм/с округляя ответ до сотых. Единицы		
	измерения в ответе указывать не надо!		
1.3	Чему равно натяжение нити F удерживающей	0,72	1
	цилиндр, в том момент, когда глубина талой		
	воды в аквариуме равна 4 см. Ответ укажите в		
	СИ округляя ответ до сотых. Единицы		
	измерения в ответе указывать не надо!		
1.4	При какой глубине талой воды в аквариуме	70	1
	натяжение нити F станет равно нулю. Ответ		
	укажите в мм округляя ответ до целых.		
	Единицы измерения в ответе указывать не		
	надо!		
1.5	Чему равна площадь основания цилиндра?	24	1
	Ответ укажите в см ²		

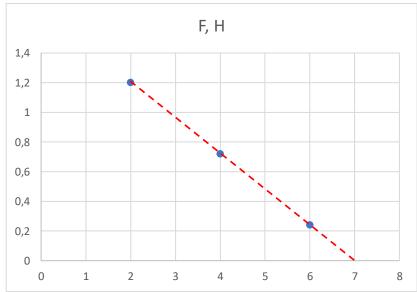
1.6	Чему равна масса цилиндра? Ответ укажите в	144	1
	граммах.		

Решение следующих пунктов задачи необходимо оформить на отдельном листке, сфотографировать (отсканировать) и загрузить в систему.

- 1.7. Чему равна средняя скорость подъёма уровня воды за последние три минуты наблюдения, если она оказалась в два раза меньше, чем за вторую минуту наблюдения. (2 балла)
- 1.8.Когда весь лёд растаял, Кирилл вынул цилиндр из аквариума, глубина воды при этом стала равна 2,5см. Определите площадь дна аквариума.
- 1.9. Чему равно отношение длин плеч горизонтального стержня L_2/L_1 ? (2 балла) **РЕШЕНИЕ:**
- 1.1.Определим среднюю скорость подъема уровня воды за первую минуту, для этого воспользуемся данными условия задачи

$$V = \frac{x_{\kappa} - x_0}{t_{\kappa} - t_0} = \frac{4 - 2}{1 - 0} = 2\frac{cM}{MUH} = 0.33\frac{MM}{ce\kappa}.$$

1.2. Аналогичным образом определим среднюю скорость подъема уровня воды за всё время наблюдений


$$V_{cp} = \frac{6-2}{5-0} = \frac{4}{5} \frac{cM}{MUH} = 0.13 \frac{MM}{ce\kappa}.$$

- 1.3. Определим натяжение нити F удерживающей цилиндр, в том момент, когда глубина талой воды в аквариуме равна 4 см. Из условия задачи видим, что при x = 4 см, t = 1 мин. Следовательно, F = 0.72 H.
- 1.4. Используя данные задачи, либо запишем зависимость F(x), либо построим график этой зависимости. Из двух таблиц, данных в условии задачи, получаем таблицу

лицу		
	x, cm	F, H
1	2	1,20
2	4	0,72
3	6	0,24

Строим график полученной зависимости, продолжаем прямую до пересечения с осью х, получаем нужное значение.

Либо можно записать зависимость F(x), для

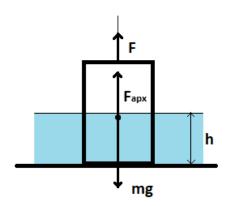
этого в общем виде записываем зависимость

$$F(x) = kx + b$$
.

Используя данные задачи, определяем угловой коэффициент наклона k и коэффициент b

$$\begin{cases} F(2) = 1,2 = 2k + b; \\ F(6) = 0,24 = 6k + b. \end{cases}$$

Решаем записанную систему относительно k и b, получаем


$$k = -0.24 \frac{H}{CM}$$
; $b = 1.68 H$.

Тогда зависимость F(x) выглядит следующим образом:

$$F(x) = -0.24x + 1.68$$
.

Зная зависимость F(x), найдем значение х'. При котором сила F равна нулю

$$0 = -0.24x' + 1.68;$$

$$x' = \frac{1.68}{0.24} = 7 \text{ (cm)}.$$

Можно то же самое определить и немного по-другому: проанализировав данные, делаем вывод, что при изменении x на 2 см, сила натяжения F меняется на 0.72 - 1.20 = -0.48 (H) (0.24 – 0.72 = -0.48 (H)), то есть при изменении уровня воды на 1 см сила натяжения F уменьшается на 0.24 H. Рассмотрим уровень жидкости 6 см, сила натяжения равно 0.24 H. Таким образом, если уровень жидкости увеличится еще на 1 см, то есть станет равным 7 см, то сила натяжения станет равной 0.

1.5. Определим площадь основания цилиндра. Определим силу натяжения при двух различных уровнях воды $h_{\rm k}$ и $h_{\rm h}$

$$F_{\text{K}} + \rho g S_{\text{L}} h_{\text{K}} - mg = 0;$$

 $F_{\text{H}} + \rho g S_{\text{L}} h_{\text{H}} - mg = 0;$

Вычитаем уравнения друг из друга, получаем

$$\Delta F + \rho g S_{II} (h_{K} - h_{H}) = 0$$

$$S_{II} = \frac{-\Delta F}{\rho_{M} g (h_{K} - h_{H})} = 24 \text{ cm}^{2}.$$

1.6. Для определения массы цилиндра, найдем силу натяжения (любым способом – по графику, из аналитической зависимости ...) прри нулевой силе Архимеда, ему соответствует x = 1 см (цилиндр в воду не погружен)

$$F_0 = 1,44 \text{ H}.$$

Запишем условие равновесия цилиндра в этом случае

$$F_0 = mg$$
.

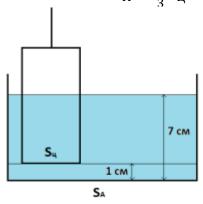
Из записанного соотношения определяем масс

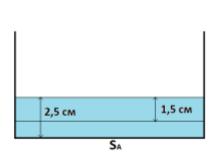
$$m = \frac{F_0}{g}; \ m = 144 \text{ r.}$$

1.7. Обозначим путь, пройденный за вторую минуту $-S_1$, а путь, пройденный за последние 3 минуты $-S_2$. Исходя из таблицы:

$$S_1 + S_2 = S_0 = 2 \text{ cm}$$
 (0,5 6)

Время обозначим соответствующими индексами.


Условие для средних скоростей дает следующее равенство:


$$\frac{S_1}{t_1} = 2\frac{S_2}{t_2} (0.5 \text{ f})$$

$$S_1 = 2S_2 \frac{t_1}{t_2}$$

$$2S_2 \frac{t_1}{t_2} + S_2 = S_0$$

$$S_2 = \frac{S_0}{2\frac{t_1}{t_2} + 1}$$

$$V_2 = \frac{S_2}{t_1} = \frac{S_0}{2t_1 + t_2} = 0,067 \frac{\text{мм}}{\text{с}} = 4 \frac{\text{мм}}{\text{мин}} (0,5 \text{ б})$$

1.8.Определим площадь дна цилиндра

$$(S_A - S_{II}) \cdot 6 \text{ cm} = S_A \cdot 1,5 \text{ cm } (0,5 \text{ 6})$$

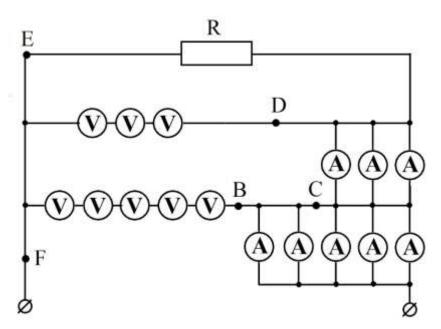
 $4S_A - 4S_{II} = S_A$
 $S_A = \frac{4}{3}S_{II} = 32 \text{ cm}^2 (0,5 \text{ 6})$

1.9.Определим отношение длин рычага. Запишем условие равновесия

$$(m + \Delta m)gL_2 = (Mg - \rho_{\mathsf{x}}gS_{\mathsf{u}}h_{\mathsf{norp}})L_1 (0.25 6)$$

$$mgL_2 = (Mg - \rho_{\mathsf{x}}gS_{\mathsf{u}}(h_{\mathsf{norp}} + \Delta h))L_1 (0.25 \,\mathsf{6})$$

Вычтем уравнения друг из друга.


$$\Delta mgL_2 = \rho_{\mathcal{H}}gS_{\mathcal{H}}\Delta hL_1 \ (0.25 \ 6)$$

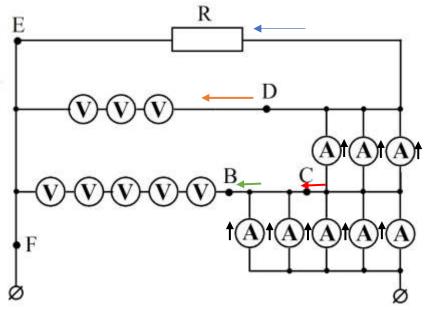
$$\Delta m = \rho_{\text{xc}} (S_A - S_{\text{II}}) \Delta h (0.25 \text{ f})$$

$$(S_A - S_{II})L_2 = S_{II}L_1$$

$$\frac{L_2}{L_1} = \frac{S_{II}}{S_A - S_{II}} = 3 \ (0.5 \ 6)$$

2. У Кирилла был паяльник.... (15 баллов)

экспериментатора Кирилла было восемь одинаковых вольтметров, одинаковых восемь миллиамперметров, резистор и очень большое желание паять. После того как схема была спаяна, Кирилл подсоединил её к источнику внешнего питания. Какого же было удивление, его когда показания всех миллиамперметров одинаковы оказались


равны 2 мА, и на всех вольтметрах также одинаково высветилось 4 В.

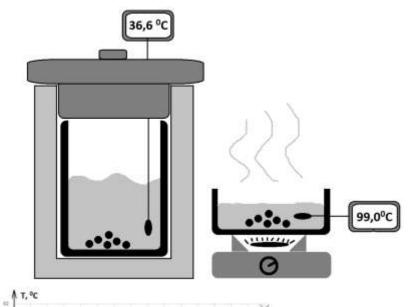
номер	вопрос	ответ	Балл
2.1	Определите ток, протекающий через точку В. Ответ	4	1
	укажите в мА, округляя до целого числа.		
2.2	Определите ток, протекающий через точку С. Ответ	0	1
	укажите в мА, округляя до целого числа.		
2.3	Определите ток, протекающий через точку D. Ответ	4	1
	укажите в мА, округляя до целого числа.		
2.4	Определите ток, протекающий через точку Е. Ответ	2	1
	укажите в мА, округляя до целого числа.		
2.5	Определите ток, протекающий через точку Г. Ответ	10	1
	укажите в мА, округляя до целого числа.		
2.6	Чему равно напряжение на резисторе R. Ответ укажите	12	1
	в СИ, округляя до целого числа.		
2.7	Чему равно сопротивление резистора R. Ответ укажите	6	1
	в кОм, округляя до целого числа.		
2.8	Чему равно сопротивление вольтметра R _V . Ответ	1	1
	укажите в кОм, округляя до целого числа.		

Решение следующих пунктов задачи необходимо оформить письменно, сфотографировать (отсканировать) и загрузить в систему.

- 2.9. Чему равно сопротивление миллиамперметра R_A? (2 балла)
- 2.10. Чему равно напряжение внешнего источника питания $U_{\text{вых}}$. (2 балла)
- 2.11. Чему равно полное сопротивление схемы, которую спаял Кирилл? (3 балла)

РЕШЕНИЕ:

Обозначим разными цветами токи, протекающие через разные ветви цепи. Синяя стрелка — ток через резистор I_R , оранжевая стрелка — ток через три вольтметра I_D , зелёная стрелка — ток через 5 вольтметров I_B , красная стрелка — ток через точку C I_C .


- 2.1. Примем за направление тока движение против часовой стрелки. Полный ток через цепь $I_F = 5*2 \text{мA} = 10 \text{ мA}$. Выше отрезка цепи ушло 3*2 мA = 6 мA, следовательно, через точку В протекает ток $I_B = 2*2 \text{мA} = 4 \text{ мA}$ (1 балл)
- 2.2 Через точку C ток не протекает, так как 6 мA ушло в верхнюю часть цепи, 4 мA ушло через точку B. $I_C = 0$ (1 балл)
- 2.3 Через точку D протекает ток $I_D = 2*2$ мA = 4 мA (1 балл)
- 2.4 Через точку E протекает тот же ток, что и через резистор. $I_E = I_R = 2$ мА (1 балл)
- 2.5 Через точку F протекает тот же ток, что и на входе цепи, т.е. $I_F = 10$ мА (1 балл)
- $2.6~\mathrm{K}$ резистору R параллельно подключены три последовательно соединённых вольтметра, каждый из которых показывает напряжение $4~\mathrm{B}$. Тогда $U_R = 3*4\mathrm{B} = 12~\mathrm{B}$. (1 балл)
- 2.7 По закону Ома для участка цепи: $I_R = U_R/R$. Отсюда R = 12B/2 мA = 6 кОм. (1 балл)
- 2.8 По закону Ома для участка цепи: $I_V = U_V/R_V$. Через каждый вольтметр протекает одинаковый ток ($I_D = I_B = 4$ мА). Отсюда $R_V = 4B/4$ мА = 1 кОм (1 балл) 2.9 Чтобы найти сопротивление амперметра, найдём напряжение на амперметре и воспользуемся законом Ома для участка цепи с одним амперметром. Напряжение на амперметре равно разности потенциалов между точками В и D. $U_{BD} = U_A = (5*4B) (3*4B) = 2*4B = 8$ В (1 балл). По закону Ома для участка цепи находим $R_A = 8$ В/2мА = 4 кОм (1 балл)

2.10 Напряжение на внешнем источнике складывается из напряжений на нижних 5 вольтметрах и пяти амперметрах.

Следовательно, $U_{BX} = 5*U_V + U_A (1 \text{ балл}) = 5*4 + 8 = 28 \text{ B} (1 \text{ балл})$

2.11 Чтобы найти полное сопротивление, воспользуемся законом Ома для участка цепи, содержащего внешний источник. $I_{\text{полн}} = U_{\text{вх}}/R_{\text{полн}}$ (2 балла). Отсюда $R_{\text{полн}} = 28\text{B}/10\text{MA} = 2.8$ кОм (1 балл)

3. Экспериментатор Кирилл и 36 шариков (10 баллов)

Экспериментатор Кирилл эксперименты проводит ПО теплообмену. В теплоизолированный сосуд (калориметр), состоящий пенопластовой основы И (теплоёмкостями крышки которых онжом всегда пренебрегать), также внутреннего толстостенного алюминиевого стакана (нужен температурной однородности), налил 100 г

воды комнатной температуры. Далее Кирилл по очереди с большими интервалами времени в калориметр перемещал металлические шарики предварительно нагретые до 99,0°C и очень аккуратно с хорошей точностью отмечал на графике крестиками зависимость установившейся температуры в калориметре от количества шариков в калориметре (см. график).

Удельная теплоемкость воды 4200 Дж/кг ⁰С.

10 98 17 98 18 18 19					×	×	×	
11 30 80 80				×				
57 m m m m		>	Κ ^					
U U U U U U U U U U U U U U U U U U U	,	×						
77 26 25 26	×							
>	<							
- X								
×								

номер	вопрос	ответ	Балл
3.1	Чему равна температура в комнате? Ответ укажите в	22	1
	⁰ С, округляя до целого числа		
3.2	Насколько поменялась температура самого первого	-72	1
	внесенного в калориметр шарика после		
	установления равновесия? Ответ укажите в ⁰ C,		
	округляя до целого числа.		
3.3	Чему равна энергия, которую получила вода от	2100	1
	первого шарика? Ответ укажите в Дж, округляя до		
	целого числа		
3.4	Оцените теплоёмкость шарика, если пренебречь	29	1
	собственной теплоемкостью калориметра		

(теплоемкость внутреннего стакана считать равным нулю). Ответ укажите в Дж/⁰С, округляя до целого числа.

Решение следующих пунктов задачи необходимо оформить письменно, сфотографировать (отсканировать) и загрузить в систему.

- 3.5.Дополнительно Кирилл провел еще один эксперимент. В пустой калориметр комнатной температуры налил 100 мл кипящий воды и тут же закрыл крышкой. Температура установилась $67,5\,^{0}$ С. Определите теплоёмкость калориметра, а затем и теплоемкость шариков. Оформите решение данного пункта на отдельном листке. (2 балла)
- 3.6. Какая температура установится в калориметре в первом эксперименте после перемещения в него 36 шариков? Оформите решение данного пункта на отдельном листке. (2 балла)
- 3.7. Какой по счету шарик увеличит температуру системы в первом эксперименте ровно на 1 0 C? Оформите решение данного пункта на отдельном листке. (2 балла) **РЕШЕНИЕ:**
- 3.1 Когда ни один шарик не брошен, термометр показывает комнатную температуру Т. Её находим по графику.
- 3.5 Запишем уравнение теплового баланса для системы калориметр-кипяток:

$$C_{K}(T_{67.5}-T_{22})+C_{B}m_{B}(T_{67.5}-T_{100})=0$$

(0,5 балла)

Откуда получаем теплоёмкость калориметра:

$$C_{\kappa} = -C_{\text{B}} m_{\text{B}} (T_{67,5} - T_{100}) / (T_{67,5} - T_{22}) =$$

= 4200*0,1*(100-67,5)/(67,5-22) = 300 Дж/С

Зная теплоемкость калориметра, запишем в уравнение теплового баланса для системы с одним шариком и калориметром с водой (1 опыт):

$$C_{\kappa}(T_{27}-T_{22})+C_{\scriptscriptstyle B}m_{\scriptscriptstyle B}(T_{27}-T_{22})+C_{\scriptscriptstyle III}(T_{27}-T_{99})=0$$

(0,5 балла)

Из этого уравнения выразим теплоемкость шарика:

$$C_{III} = (C_{K}(T_{27} - T_{22}) + C_{B}m_{B}(T_{27} - T_{22}))/(T_{99} - T_{27}) =$$

$$= (300+4200*0,1)*(27-22)/(99-27)=50$$
 Дж/С

(0,5 балла)

3.6 Запишем уравнение теплового баланса для системы калориметр+вода+36 шариков:

$$C_{\kappa}(T_{x}-T_{22})+C_{B}m_{B}(T_{x}-T_{22})+36C_{III}(T_{x}-T_{99})=0$$
 (1 балл)

Найдем установившеюся температуру T_x:

$$T_x\!\!=\!\!\left(\;C_{\scriptscriptstyle K}T_{22}+C_{\scriptscriptstyle B}m_{\scriptscriptstyle B}\;T_{22}+36C_{{\scriptscriptstyle III}}T_{99}\;\right)/\left(C_{\scriptscriptstyle K}\!\!+C_{\scriptscriptstyle B}m_{\scriptscriptstyle B}\!\!+\!\!36C_{{\scriptscriptstyle III}}\right)=$$

$$= ((300+4200*0,1)*22+36*50*99)/(300+4200*0,1+36*50)=77^{0}C$$
 (1 балл)

3.7 Пусть Nый шарик увеличивает температуру системы на $t=1^{0}$ C. Запишем дважды уравнение теплового баланса для N-1 шарика и для Nго:

$$C_{K}(T_{X}-T_{22})+C_{B}m_{B}(T_{X}-T_{22})+(N-1)C_{III}(T_{X}-T_{99})=0$$

$$C_{\kappa}(T_x+t-T_{22})+C_{\scriptscriptstyle B}m_{\scriptscriptstyle B}(T_x+t-T_{22})+NC_{\scriptscriptstyle III}(T_x+t-T_{99})=0$$

(0,5 балла)

Выразим Тх из этих уравненией:

$$T_x = (C_K T_{22} + C_B m_B T_{22} + (N-1)C_{III}T_{99}) / (C_K + C_B m_B + (N-1)C_{III})$$

$$T_x+t = (C_k T_{22} + C_B m_B T_{22} + N C_{III} T_{99}) / (C_k + C_B m_B + N C_{III})$$
 (0,5 балла)

Подставим верхнее в нижнее и получим одно уравнение с одним неизвестным, решим его. (0,5 балла)

Получим N=19 (можно считать правильными ответами еще N=18 и N=20). (0,5 балла)

4. Теоретик Лёша и пружинки (4 балла)

У теоретик Лёша взял в лаборатории у экспериментатора Кирилла две гирьки массами m и 2m и две пружинки. Коэффициент жёсткости одной пружинки Лёша знал $k_1 = 100 \text{ H/m}$, а как настоящий теоретик коэффициент жесткости второй он обозначил k_2 . Весами пользоваться Леша умел и определил, что m = 200 г. A дальше Алексей придумал несколько задач, решил их и проверил их экспериментально. Эти задачи предлагаются вам.

	иментально. Эти задачи предлагаются вам.		
No	Вопрос	Ответ	Балл
4.1.	Тело массы т помещено на пружину с коэффициентом жёсткости k_1 . Найти величину деформации пружины (см).	2	1
4.2.	Тело массой 2m прикреплено к нижнему концу пружины жесткости k ₂ . Верхним концом пружина прикреплена к потолку. Величина деформации пружины в этом случае оказалось в три раза больше, чем величина деформации пружины k ₁ в первом случае. Найти коэффициент жесткости второй пружины (H/м). Ответ округлить до целого.	67	1
4.3.	Из двух пружин и двух тел собрана система, подвешенная к потолку и показанная на рисунке. Определить величины деформаций обеих пружин. В ответе сначала записать величину деформации первой пружины, затем через точку с запятой (;) величину деформации второй пружины. Единицы измерения ответов – см.	6; 3	2

РЕШЕНИЕ:

4.1.В первом случае величину деформации пружины определяем их условия равновесия тела массой m

$$mg = k_1 x_1;$$
 $x_1 = \frac{mg}{k_1}; \ x_1 = 2 \text{ см.}$

4.2.Во втором случае коэффициент упругости второй пружины определяется из условия равновесия тела 2m

$$2mg = k_2 3x_2;$$

 $k_2 = \frac{2}{3}k_1; k_2 = 66,7 \frac{H}{M}.$

4.3.В третьем случае величину деформации второй пружины найдем из условия равновесия тела m

$$mg = k_2 x'_2;$$
 $x'_2 = \frac{mg}{k_2} = \frac{3}{2} x_1; \ \ x'_2 = 3 \ \mathrm{cm}.$

Величину деформации первой пружины найдем из условия равновесия тела массой 2m

$$k_1 x'_1 = 2mg + k_2 x'_2 = 2mg + mg = 3mg;$$

$$x_{\prime 1} = x_1; \ x'_1 = 6 \text{ cm}.$$

5. Теоретик Лёша изучает манометр (7 баллов)

Теоретик Лёша решил изготовить самодельный манометр. Две жесткие трубки сечения S и 2S он соединил внизу гибкой трубкой пренебрежимо малого объема. Затем в обе трубки он налил жидкость плотности ρ . В тетради появилась следующая запись «в начальный момент времени (t=0) в обеих трубках находится жидкость плотности ρ , ее уровень равен 2h, h=10 см, S=10 см 2 ». В стенку правой трубки вблизи дна Алексей вмонтировал манометр.

После этого в левую трубку, сечение которой равно S, Лёша стал медленно и равномерно наливать жидкость плотности 0.8ρ , причём объем, который поступает за одну секунду, равен w, причем w = 0.1 л/c.

Примечание: манометр – это прибор, измеряющий давление.

Tipume	<u>чание: манометр – это приоор, измеряющии оавленив</u>	٠.	-
$N_{\underline{0}}$	Вопрос	Ответ	Балл
5.1.	S При $t=0$ (Па).	2000	1
5.2.	Через сколько времени в левой трубке окажется только жидкость плотности 0,8ρ (с). Ответ дайте с точностью до сотых.	3,75	2
5.3.	Чему будут равны показания манометра в тот момент времени, когда вся жидкость плотности р будет вытеснена в правую трубку (Па).	3000	1

Решение следующего пункта задачи необходимо оформить письменно, сфотографировать (отсканировать) и загрузить в систему.

Как с течением времени меняются показания манометра? Построить график этой зависимости. (3 балла)

РЕШЕНИЕ:

5.1.В начальный момент времени в правом колене находится жидкость плотности р, высота уровня которой 2h, поэтому показания маномера (давление в правом колене вблизи дна) равны

$$p_0 = 2\rho g h; \; p_0 = 2000 \; \Pi a.$$

5.2. Полный объём жидкости плотности р равен

$$2hS + 2h2S = 6hS.$$

В тот момент времени, когда она полностью вытеснена в правое колено, её уровень равен

$$\frac{6hS}{2S} = 3h.$$

В этот момент времени давление на дно в правом колене равно

$$p_{\text{прав}} = 3\rho g h$$
.

В левом колене в это время будет только жидкость плотности 0,8р, ее давление вблизи дна должно быть таким же, как в правом колене, поэтому для определения уровня жидкости в левом колене можно записать

$$0.8 \rho g h_{\text{\tiny JEB}} = 3 \rho g h.$$

Уровень жидкости в левом колене равен

$$h_{\text{лев}} = \frac{3}{0.8} h = \frac{15}{4} h; \quad h_{\text{лев}} = 37.5 \text{ см.}$$

Для создания такого уровня в левое колено должен поступить объём жидкости

$$\frac{15}{4}Sh$$
.

Время т для поступления такого объема равно

$$\tau = \frac{\frac{15}{4}Sh}{w}; \ \tau = 3,75 c.$$

5.3. Показания манометра в тот момент времени, когда вся жидкость плотности р будет вытеснена в правую трубку (уровень жидкости плотности р равен 3h) равны

$$p_1 = 3\rho g h; \ p_1 = 3000 \ \Pi a.$$

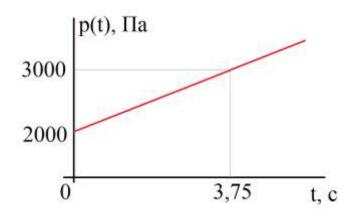
5.4. В левой части уровень жидкости плотности ρ понижается, в правой повышается. Если в левом колене уровень жидкости понизился на 2y, то в правом повысился на y. (0,5)

Тогда давление вблизи дна в левом колене с течением времени меняется по закону (0,5 балла)

$$p_{\text{\tiny JEB}} = \rho g(2h - 2y) + 0.8\rho g \frac{w}{S} t.$$

В правом колене давление вблизи дна равно (0,5 балла)

$$p_{\text{прав}} = \rho g(2h + y).$$


Из условия одинаковости давлений находим у

$$y = \frac{4}{15} \frac{w}{S} t.$$

Тогда с течением времени давление в правом колене, а, следовательно, и показания манометра меняются по закону

$$p_{\text{прав}} = \rho g(2h + y) = p_0 + \frac{4}{15} \rho g \frac{w}{S} t.$$

Подставив значения, получим

 $p_{\text{прав}}(t) = 2000 + 266,7 \cdot t.$

График этой зависимости – прямая линия.

Наличие линейной зависимости, оформленной в виде формулы (1 балл), идея линейной зависимости без обоснования — не более 0,25 балла. График — 0,5 балла. В сумме график с аккуратными ключевыми точками и обоснованной линейной зависимостью — до 1,5 баллов.

6. Просто задача (4 балла)

Тело с внешним объемом $6V_0$, изготовленное из материала с плотностью ρ , имеет внутреннюю полость, заполненную материалом плотности 3ρ . Масса тела равна $10\rho V_0$.

No	Вопрос	Ответ	балл
6.1	Во сколько раз объем полости меньше объема тела?	3	1
6.2.	Во сколько раз средняя плотность тела больше	1,67	1
	плотности материала внешней оболочки? Ответ		
	округлить до сотых.		
6.3.	Пусть плотность внешней оболочки равна $\rho = 3000$	4	2
	$\kappa \Gamma / M^3$. Объем тела по-прежнему $6V_0$. При каком		
	минимальном объеме пустой полости тело будет		
	плавать в воде? Плотность воды равна $\rho_{\rm B} = 1000~{\rm kr/m^3}$.		
	В ответе следует указать, во сколько раз объем полости		
	должен быть больше объема V_0 .		

РЕШЕНИЕ:

6.1.Выразим массу тела через известные плотности и объемы, объем полости обозначим V_{non}

$$10\rho V_0 = 3\rho V_{\text{пол}} + \rho (6V_0 - V_{\text{пол}}).$$

Объем тела 6V₀, а объем полости $V_{\text{пол}}=2V_0$, что в три раза меньше.

$$\frac{V_{\text{тела}}}{V_{\text{пол}}} = \frac{6V_0}{2V_0} = 3$$

6.2. Определим среднюю плотность тела

$$\rho_{cp} = \frac{10\rho V_0}{6V_0} = \frac{5}{3}\rho.$$

Следовательно, отношение средней плотности тела к плотности оболочки равно

$$\frac{\rho_{\rm cp}}{\rho} = \frac{5}{3} = 2,17.$$

6.3. Чтобы тело плавало, его средняя плотность должна быть не больше плотности воды $\rho_{\text{воды}}$, поэтому можно записать

$$ho_{cp} = rac{
ho(6V_0 - V_{ ext{пол}})}{6V_0} \le
ho_{ ext{воды}}.$$

Проделав математические преобразования, получим, что для плавания тела объем полости $V_{\text{пол}}$ должен быть больше или равен $4V_0$. Итак, минимальный объем равен $4V_0$.